Article

The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: Human and rodent perspectives

Department of Biology, University of California, Riverside, CA 92521, USA.
Journal of Experimental Biology (Impact Factor: 2.9). 01/2011; 214(Pt 2):206-29. DOI: 10.1242/jeb.048397
Source: PubMed

ABSTRACT

Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A largely separate literature points to a key role for orexins in SPA and NEAT. Brain reward centers are involved in both types of physical activities and eating behaviours, likely leading to complex interactions. Moreover, voluntary exercise and, possibly, eating can be addictive. A growing body of research considers the relationships between personality traits and physical activity, appetite, obesity and other aspects of physical and mental health. Future studies should explore the neurobiology, endocrinology and genetics of physical activity and sedentary behaviour by examining key brain areas, neurotransmitters and hormones involved in motivation, reward and/or the regulation of energy balance.

Download full-text

Full-text

Available from: Clemens Drenowatz
  • Source
    • "The position of locomotion at the interface between physiology, behaviour and ecology means that it is an essential component that determines fitness of individuals (Husak et al., 2006) and thereby, persistence of populations (Nathan et al., 2008). Locomotor performance affects behaviour by increasing resource-holding potential (Mowles et al., 2010) and because greater physiological capacities will permit more sustained physical activity and exploration (Garland et al., 2011; Sinclair et al., 2014). The physiological traits underlying locomotor performance are therefore likely to influence behaviour. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Locomotion facilitates behaviour and its underlying physiological mechanisms may therefore impact behavioural phenotypes. Metabolism is often thought to modulate locomotion and behaviour, but empirical support for this suggestion is equivocal. Muscle contractile function is directly associated with locomotion. Here, we test the hypotheses that muscle mechanics determine locomotor performance and activity in zebrafish (Danio rerio) and thereby also affect risk-taking behaviour. We show that there is a mechanistic link between muscle performance and behaviour by manipulating muscle contractile properties, which caused proportional changes in critical sustained swimming performance and, in an open arena, voluntary swimming speed, the proportion of time fish were active, and the latency to move. We modelled the relationships between muscle contractile properties, swimming performance, activity and behaviour with a partial least-squares path model. The latent variable 'muscle', formed by isolated muscle force production, stress, fatigue resistance and activation and relaxation rates, had a significant positive effect on swimming performance ('swim' reflected in sustained and sprint speeds). Together, muscle and swim had a significant positive effect on activity, and explained 71.8% of variation in the distance moved, time active and maximum voluntary speed in an open field. Activity had a significant positive effect on boldness, explaining 76.0% of variation in latencies to move and to approach a novel object. Muscle contractile function determines voluntary movement and we suggest that exploration and dispersal are functions of physiological and mechanical optimisation. Boldness therefore may be partly explained by the greater likelihood of faster fish to move further and encounter novel objects and conspecifics more quickly as a result.
    Full-text · Article · Oct 2015 · Journal of Experimental Biology
  • Source
    • "Alternatively, selective breeding for rats with high intrinsic aerobic capacity provides protection from DIO [15] and from metabolic and cardiovascular complications [16]. Commenting on selected lines of mice for high distances of voluntary wheel running, Garland et al. (See [17] [18] [19] [20] [21]) state that high " activity-selected lines of mice…have revealed alterations in brain function that seem to indicate changes in motivation or propensity to exercise on wheels. " Garland's group has reported that mice selected for high wheel running display co-selected phenotypes of increased cage activity [22], lower body fat [23], and varied responses to DIO [24] when compared to non-selected control lines. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic disease risk is influenced by genetics and modifiable factors, such as physical activity and diet. Beginning at 6 wks of age, rats selectively bred for high (HVR) versus low voluntary running distance (LVR) behaviors were housed in a complex design with or without voluntary running wheels being fed either a standard or Western (WD, 42% kcal from fat and added sucrose) diet for 8wks. Upon intervention completion, percent body fat, leptin, insulin, and mediobasal hypothalamic mRNAs related to appetite control were assessed. Wheel access led to differences in body weight, food intake, and serum leptin and insulin. Intriguing, percent body fat, leptin, and insulin did not differ between HVR and LVR lines in response to the two levels of voluntary running, regardless of diet, after the 8 wk. experiment despite HVR eating more calories than LVR regardless of diet and voluntarily running 5-7 times further in wheels than LVR. In response to WD, we observed increases in Cart and Lepr mediobasal hypothalamic mRNA in HVR, but no differences in LVR. Npy mRNA was intrinsically greater in LVR than HVR, while wheel access led to greater Pomc and Cart mRNA in LVR versus HVR. These data suggest that despite greater consumption of WD, HVR animals respond similarly to WD as LVR as a result, in part, of their increased wheel running behavior. Furthermore, high physical activity in HVR may offset the deleterious effects of a WD on adiposity despite greater energy intake in this group.
    Full-text · Article · Sep 2015 · Physiology & Behavior
  • Source
    • "Los cambios notables a nivel mental, dejando de lado la hipótesis de las endorfinas y otros mecanismos implicados (Harbach y col., 2000; Kolata., 2002) carecen de una explicación científica y por tanto, se ha planteado otro mecanismo de acción que induzca estos efectos, siendo postulado el sistema cannabinoide como participante (Gaoni y Mechoulam., 1964; Devane y cols., 1988; Matsuda y col., 1990; Munro y col., 1993) por sus diferentes efectos sobre el cuerpo humano a través no solamente de la activación de receptores específicos (CB1 y CB2), sino también por el aumento de endocannabinoides circulantes. Diversos estudios indican niveles elevados de estos compuestos durante el ejercicio físico (Dietrich y McDaniel., 2004; Keeney y col., 2008; Fuss y Gass., 2010; Garland y col., 2011), lo que puede sugerir la implicación del sistema cannabinoide. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Son múltiples los beneficios del ejercicio físico sobre la mente y el cuerpo, y ello es conocido que está en relación con la intensidad y duración del mismo (Cook y Koltyn., 2000). Los cambios notables a nivel mental, dejando de lado la hipótesis de las endorfinas y otros mecanismos implicados (Harbach y col., 2000; Kolata., 2002) carecen de una explicación científica y por tanto, se ha planteado otro mecanismo de acción que induzca estos efectos, siendo postulado el sistema cannabinoide como participante (Gaoni y Mechoulam., 1964; Devane y cols., 1988; Matsuda y col., 1990; Munro y col., 1993) por sus diferentes efectos sobre el cuerpo humano a través no solamente de la activación de receptores específicos (CB1 y CB2), sino también por el aumento de endocannabinoides circulantes. Diversos estudios indican niveles elevados de estos compuestos durante el ejercicio físico (Dietrich y McDaniel., 2004; Keeney y col., 2008; Fuss y Gass., 2010; Garland y col., 2011), lo que puede sugerir la implicación del sistema cannabinoide.
    Full-text · Conference Paper · Dec 2014
Show more