The Structural and Biochemical Characterization of Human RNase H2 Complex Reveals the Molecular Basis for Substrate Recognition and Aicardi-Goutières Syndrome Defects

Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.
Journal of Biological Chemistry (Impact Factor: 4.57). 12/2010; 286(12):10540-50. DOI: 10.1074/jbc.M110.181974
Source: PubMed


RNase H2 cleaves RNA sequences that are part of RNA/DNA hybrids or that are incorporated into DNA, thus, preventing genomic instability and the accumulation of aberrant nucleic acid, which in humans induces Aicardi-Goutières syndrome, a severe autoimmune disorder. The 3.1 Å crystal structure of human RNase H2 presented here allowed us to map the positions of all 29 mutations found in Aicardi-Goutières syndrome patients, several of which were not visible in the previously reported mouse RNase H2. We propose the possible effects of these mutations on the protein stability and function. Bacterial and eukaryotic RNases H2 differ in composition and substrate specificity. Bacterial RNases H2 are monomeric proteins and homologs of the eukaryotic RNases H2 catalytic subunit, which in addition possesses two accessory proteins. The eukaryotic RNase H2 heterotrimeric complex recognizes RNA/DNA hybrids and (5')RNA-DNA(3')/DNA junction hybrids as substrates with similar efficiency, whereas bacterial RNases H2 are highly specialized in the recognition of the (5')RNA-DNA(3') junction and very poorly cleave RNA/DNA hybrids in the presence of Mg(2+) ions. Using the crystal structure of the Thermotoga maritima RNase H2-substrate complex, we modeled the human RNase H2-substrate complex and verified the model by mutational analysis. Our model indicates that the difference in substrate preference stems from the different position of the crucial tyrosine residue involved in substrate binding and recognition.

Download full-text


Available from:, Aug 28, 2015 · License: CC BY-NC
  • Source
    • "Furthermore, both Arg186 and Arg235 are thought to have roles in stabilizing the conformation of a highly conserved GRG motif (Supp. Figure S1B and C) responsible for recognition of the substrate RNA-DNA junction (Figiel, et al., 2010), likely explaining why the Arg186Trp and Arg235Gln mutations dramatically reduce substrate binding and enzyme activity in vitro (Coffin, et al., 2011). The Asn212Ile substitution has no detectable effect on the catalytic activity of recombinant RNase H2, although it does cause a small reduction in substrate binding affinity (Coffin, et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Aicardi-Goutières syndrome (AGS) is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1 or ADAR1. Here we provide molecular, biochemical and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families.
    Full-text · Article · Aug 2013 · Human Mutation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the three genes encoding the heterotrimeric RNase H2 complex cause Aicardi-Goutières Syndrome (AGS). Our mouse RNase H2 structure revealed that the catalytic RNase H2A subunit interfaces mostly with the RNase H2C subunit that is intricately interwoven with the RNase H2B subunit. We mapped the positions of AGS-causing RNase H2A mutations using the mouse RNase H2 structure and proposed that these mutations cause varied effects on catalytic potential. To determine the functional consequences of these mutations, heterotrimeric human RNase H2 complexes containing the RNase H2A subunit mutations were prepared, and catalytic efficiencies and nucleic acid binding properties were compared with the wild-type (WT) complex. These analyses reveal a dramatic range of effects with mutations at conserved positions G37S, R186W, and R235Q, reducing enzymatic activities and substrate binding affinities by as much as a 1000-fold, whereas mutations at non-conserved positions R108W, N212I, F230L, T240M, and R291H reduced activities and binding modestly or not at all. All mutants purify as three-subunit complexes, further supporting the required heterotrimeric structure in eukaryotic RNase H2. These kinetic properties reveal varied functional consequences of AGS-causing mutations in the catalytic RNase H2A subunit and reflect the complex mechanisms of nuclease dysfunction that include catalytic deficiencies and altered protein-nucleic acid interactions relevant in AGS.
    Preview · Article · Mar 2011 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNase H2 of Saccharomyces cerevisiae consists of three essential subunits (Rnh201, Rnh202 and Rnh203) and plays a critical role in the removal of RNA incorporated in duplex DNA. In the present study, we purified individual subunits and heterodimeric subcomplexes to examine the assembly and biochemical function of subunits of RNase H2 in vitro. Reconstitution experiments revealed that Rnh202 and Rnh203 first form a subcomplex, followed by the recruitment of Rnh201 to complete complex formation. Rnh201 alone or in combination with Rnh203 showed neither substrate-binding, nor catalytic activity, indicating that both activities of Rnh201 are latent until it becomes an integral part of the complex. However, Rnh202 by itself showed substrate-binding activity. RNase H2 containing mutant Rnh202 defective in substrate binding had decreased substrate-binding activity, indicating that Rnh202 contributes directly to substrate binding. Reconstitution of RNase H2 complexes with various mutant subunits allowed us to assess the influence of conserved amino acid residues in either Rnh201 or Rnh202 on substrate-binding and catalytic activities. We found that the substrate-binding activities of both Rnh201 and Rnh202 were critical for cleavage of the phosphodiester bond present between DNA and RNA in RNase H2 substrates. Structured digital abstract
    Full-text · Article · Dec 2011 · FEBS Journal
Show more