In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells

Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece.
Journal of Cellular and Molecular Medicine (Impact Factor: 4.01). 09/2010; 15(9):1896-913. DOI: 10.1111/j.1582-4934.2010.01180.x
Source: PubMed


Human mesenchymal progenitor cells (MPCs) are considered to be of great promise for use in tissue repair and regenerative medicine. MPCs represent multipotent adherent cells, able to give rise to multiple mesenchymal lineages such as osteoblasts, adipocytes or chondrocytes. Recently, we identified and characterized human second trimester amniotic fluid (AF) as a novel source of MPCs. Herein, we found that early colonies of AF-MPCs consisted of two morphologically distinct adherent cell types, termed as spindle-shaped (SS) and round-shaped (RS). A detailed analysis of these two populations showed that SS-AF-MPCs expressed CD90 antigen in a higher level and exhibited a greater proliferation and differentiation potential. To characterize better the molecular identity of these two populations, we have generated a comparative proteomic map of SS-AF-MPCs and RS-AF-MPCs, identifying 25 differentially expressed proteins and 10 proteins uniquely expressed in RS-AF-MPCs. Furthermore, SS-AF-MPCs exhibited significantly higher migration ability on extracellular matrices, such as fibronectin and laminin in vitro, compared to RS-AF-MPCs and thus we further evaluated SS-AF-MPCs for potential use as therapeutic tools in vivo. Therefore, we tested whether GFP-lentiviral transduced SS-AF-MPCs retained their stem cell identity, proliferation and differentiation potential. GFP-SS-AF-MPCs were then successfully delivered into immunosuppressed mice, distributed in different tissues and survived longterm in vivo. In summary, these results demonstrated that AF-MPCs consisted of at least two different MPC populations. In addition, SS-AF-MPCs, isolated based on their colony morphology and CD90 expression, represented the only MPC population that can be expanded easily in culture and used as an efficient tool for future in vivo therapeutic applications.

Download full-text


Available from: Maria G Roubelakis, Oct 21, 2014
  • Source
    • "AF-stem cells or AF-MSCs have been enriched using a variety of techniques, including one and two step cultures, CD117+ selection or short term culture to generate fibroblastoid colonies (reviewed in [26]) [19], [21], [23], [28], [29]. Using the latter approach, Roubelakis et al. [29] have identified and enriched for two subsets of human AF-MSCs, the spindle shaped (SS-AF-MSCs) and the round shaped (RS-AF-MSCs), obtained at the time of amniocentesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human amniotic fluid obtained at amniocentesis, when cultured, generates at least two morphologically distinct mesenchymal stem/stromal cell (MSC) subsets. Of these, the spindle shaped amniotic fluid MSCs (SS-AF-MSCs) contain multipotent cells with enhanced adipogenic, osteogenic and chondrogenic capacity. Here, we demonstrate, for the first time, the capacity of these SS-AF-MSCs to support neovascularization by umbilical cord blood (UCB) endothelial colony forming cell (ECFC) derived cells in both in vitro and in vivo models. Interestingly, although the kinetics of vascular tubule formation in vitro were similar when the supporting SS-AF-MSCs were compared with the best vasculogenic supportive batches of bone marrow MSCs (BMSCs) or human dermal fibroblasts (hDFs), SS-AF-MSCs supported vascular tubule formation in vivo more effectively than BMSCs. In NOD/SCID mice, the human vessels inosculated with murine vessels demonstrating their functionality. Proteome profiler array analyses revealed both common and distinct secretion profiles of angiogenic factors by the SS-AF-MSCs as opposed to the hDFs and BMSCs. Thus, SS-AF-MSCs, which are considered to be less mature developmentally than adult BMSCs, and intermediate between adult and embryonic stem cells in their potentiality, have the additional and very interesting potential of supporting increased neovascularisation, further enhancing their promise as vehicles for tissue repair and regeneration.
    Full-text · Article · Jan 2013 · PLoS ONE
  • Source
    • "Recent evidence suggests that diverse subpopulations of multipotent cells in amniotic fluid differ in marker expression, morphology, and/or growth kinetics [16, 156]. Furthermore, amniotic membrane-derived cells are not as homogeneous as previously thought. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The amniotic membrane (AM) and amniotic fluid (AF) have a long history of use in surgical and prenatal diagnostic applications, respectively. In addition, the discovery of cell populations in AM and AF which are widely accessible, nontumorigenic and capable of differentiating into a variety of cell types has stimulated a flurry of research aimed at characterizing the cells and evaluating their potential utility in regenerative medicine. While a major focus of research has been the use of amniotic membrane and fluid in tissue engineering and cell replacement, AM- and AF-derived cells may also have capabilities in protecting and stimulating the repair of injured tissues via paracrine actions, and acting as vectors for biodelivery of exogenous factors to treat injury and diseases. Much progress has been made since the discovery of AM and AF cells with stem cell characteristics nearly a decade ago, but there remain a number of problematic issues stemming from the inherent heterogeneity of these cells as well as inconsistencies in isolation and culturing methods which must be addressed to advance the field towards the development of cell-based therapies. Here, we provide an overview of the recent progress and future perspectives in the use of AM- and AF-derived cells for therapeutic applications.
    Full-text · Article · Oct 2012
  • Source
    • "First, we isolated clones of long-lived epithelial cells; PB3B5 cells have been in culture for more than 25 passages. This is significant because others have noted that clonal populations of epithelial cells are difficult to maintain beyond 5 or 6 passages [35] [40] [41] and that amniotic cell cultures either show or acquire a uniform stromal or fibroblast-like morphology during culture [26, 42–44]. Long-lived clonal populations like PB3B5 could reflect unique epithelial cell types and/or propagation of epithelial cell clones without the paracrine effects that may be present in mixed cell populations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations.
    Full-text · Article · Sep 2012
Show more