Systemic transplantation of human adipose‐derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function

Department of Microbiology, Yeungnam University College of Medicine, Daegu, Korea.
Journal of Cellular and Molecular Medicine (Impact Factor: 4.01). 12/2010; 15(10):2082-94. DOI: 10.1111/j.1582-4934.2010.01230.x
Source: PubMed


Systemic transplantation of adipose-derived stem cells (ASCs) is emerging as a novel therapeutic option for functional recovery of diverse damaged tissues. This study investigated the effects of systemic transplantation of human ASCs (hASCs) on bone repair. We found that hASCs secrete various bone cell-activating factors, including hepatocyte growth factor and extracellular matrix proteins. Systemic transplantation of hASCs into ovariectomized mice induced an increased number of both osteoblasts and osteoclasts in bone tissue and thereby prevented bone loss. We also observed that conditioned medium from hASCs is capable of stimulating proliferation and differentiation of osteoblasts via Smad/extracellular signal-regulated kinase (ERK)/JNK (c-jun NH(2) -terminal kinase) activation as well as survival and differentiation of osteoclasts via ERK/JNK/p38 activation in vitro. Overall, our findings suggest that paracrine factors secreted from hASCs improve bone repair and that hASCs can be a valuable tool for use in osteoporosis therapy.

Download full-text


Available from: Dong-Won Bae
  • Source
    • "Therapeutic potential for bone regeneration by systemic transplantation of genetically manipulated MSCs coexpressing CXCR4 and Runx2 in glucocorticoid-induced osteoporotic mice has been recently suggested [26]. Lee K, et al. showed that hASC-based therapy via systemic transplantation could be effective in bone repair by a mechanism predominantly mediated through secretion of paracrine factors by hADSCs [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467) involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs). Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX)-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.
    Full-text · Article · Jan 2012 · Journal of Translational Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging has less effect on adipose-derived mesenchymal stem cells (ADSCs) than on bone marrow-derived mesenchymal stem cells (BMSCs), but whether the fact holds true in stem cells from elderly patients with osteoporotic fractures is unknown. In this study, ADSCs and BMSCs of the same donor were harvested and divided into two age groups. Group A consisted of 14 young patients (36.4 ± 11.8 years old), and group B consisted of eight elderly patients (71.4 ± 3.6 years old) with osteoporotic fractures. We found that the doubling time of ADSCs from both age groups was maintained below 70 hrs, while that of BMSCs increased significantly with the number of passage. When ADSCs and BMSCs from the same patient were compared, there was a significant increase in the doubling time of BMSCs in each individual from passages 3 to 6. On osteogenic induction, the level of matrix mineralization of ADSCs from group B was comparable to that of ADSCs from group A, whereas BMSCs from group B produced least amount of mineral deposits and had a lower expression level of osteogenic genes. The p21 gene expression and senescence-associated β-galactosidase activity were lower in ADSCs compared to BMSCs, which may be partly responsible for the greater proliferation and differentiation potential of ADSCs. It is concluded that the proliferation and osteogenic differentiation of ADSCs were less affected by age and multiple passage than BMSCs, suggesting that ADSCs may become a potentially effective therapeutic option for cell-based therapy, especially in elderly patients with osteoporosis.
    Full-text · Article · May 2011 · Journal of Cellular and Molecular Medicine
  • H Huang · N Zhao · X Xu · Y Xu · S Li · J Zhang · P Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate tumor necrosis factor alpha (TNF-α)-induced changes in osteogenic differentiation from mesenchymal stem cells (MSCs). Blockade of nuclear factor-κB (NF-κB) was achieved in ST2 murine MSCs via overexpression of the NF-κB inhibitor, IκBα. Osteogenic differentiation was induced in IκBα-overexpressing ST2 cells and normal ST2 cells when these cells were treated with TNF-α at various concentrations. Expression levels of bone marker genes were determined using real time RT-PCR and ALP activity assay. In vitro mineralization was performed to determine long-term exposure to TNF-α on mineral nodule formation. MTT assay was used to determine the changes in cell proliferation/survival. Levels of Runx2, Osx, OC and ALP were up-regulated in cell cultures treated with TNF-α at lower concentrations, while down-regulated in cell cultures treated with TNF-α at higher concentrations. Blockade of NF-κB signaling reversed the inhibitory effect observed in cell cultures treated with TNF-α at higher concentrations, but showed no effect on cell cultures treated with TNF-α at lower concentrations. In contrast, long-term treatment of TNF-α at all concentrations induced inhibitory effects on in vitro mineral nodule formation. MTT assay showed that TNF-α inhibits proliferation/survival of mesenchymal stem cells when the NF-κB signaling pathway is blocked. The binding of TNF-α to its receptors results in the activation of multiple signaling pathways, which actively interact with each other to regulate the differentiation, proliferation, survival and apoptosis of MSCs.
    No preview · Article · Oct 2011 · Cell Proliferation
Show more