miRNA-7 Attenuation in Schwannoma Tumors Stimulates Growth by Upregulating Three Oncogenic Signaling Pathways

Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Cancer Research (Impact Factor: 9.33). 02/2011; 71(3):852-61. DOI: 10.1158/0008-5472.CAN-10-1219
Source: PubMed


Micro RNAs (miRNA) negatively regulate protein-coding genes at the posttranscriptional level and are critical in tumorigenesis. Schwannomas develop from proliferation of dedifferentiated Schwann cells, which normally wrap nerve fibers to help support and insulate nerves. In this study, we carried out high-throughput miRNA expression profiling of human vestibular schwannomas by using an array representing 407 known miRNAs to explore the role of miRNAs in tumor growth. Twelve miRNAs were found to be significantly deregulated in tumor samples as compared with control nerve tissue, defining a schwannoma-typical signature. Among these miRNAs, we focused on miR-7, which was one of the most downregulated in these tumors and has several known oncogene targets, including mRNAs for epidermal growth factor receptor (EGFR) and p21-activated kinase 1 (Pak1). We found that overexpression of miR-7 inhibited schwannoma cell growth both in culture and in xenograft tumor models in vivo, which correlated with downregulation of these signaling pathways. Furthermore, we identified a novel direct target of miR-7, the mRNA for associated cdc42 kinase 1 (Ack1), with the expression levels of miR-7 and Ack1 being inversely correlated in human schwannoma samples. These results represent the first miRNA profiling of schwannomas and the first report of a tumor suppressor function for miR-7 in these tumors that is mediated by targeting the EGFR, Pak1, and Ack1 oncogenes. Our findings suggest miR-7 as a potential therapeutic molecule for schwannoma treatment, and they prompt clinical evaluation of drugs that can inhibit the EGFR, Pak1, and Ack1 signaling pathways to treat this tumor type.

Download full-text


Available from: Gokhan Baris Ozdener
  • Source
    • "Our previous study showed that lapatinib treatment reduced the expression of microRNA-7 (MiR-7) in MDA-MB-231/Lap cells, and thereby led to their enhanced migration and invasion abilities [16]. MiR-7 also functions in cell cycle arrest and in reducing cell growth and viability434445. We thus investigated the role of miR-7 in mediating lapatinib-induced Raf-1/ MAPK/c-Jun activation and IL-6 expression by restoring the expression of miR-7 in MDA-MB-231/Lap cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor (TKI), has been approved for HER2-positive breast cancer patients. Nevertheless, its inhibitory effect on EGFR did not deliver clinical benefits for triple-negative breast cancer (TNBC) patients even EGFR overexpression was frequently found in this disease. Moreover, lapatinib was unexpectedly found to enhance metastasis of TNBC cells, but the underlying mechanisms are not fully understood. In this study, we explored that the level of interleukin-6 (IL-6) was elevated in lapatinib-treated TNBC cells. Treatment with IL-6 antibody abolished the lapatinib-induced migration. Mechanistically, the signaling axis of Raf-1/mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinases (JNKs), p38 MAPK, and activator protein 1 (AP-1) was activated in response to lapatinib treatment to induce IL-6 expression. Furthermore, our data showed that microRNA-7 directly binds and inhibits Raf-1 3'UTR activity, and that down-regulation of miR-7 by lapatinib contributes to the activation of Raf-1 signaling pathway and the induction of IL-6 expression. Our results not only revealed IL-6 as a key regulator of lapatinib-induced metastasis, but also explored the requirement of miR7/Raf-1/MAPK/AP-1 axis in lapatinib-induced IL-6 expression.
    Preview · Article · Oct 2015 · Oncotarget
  • Source
    • "MiR-7 has been characterized as a tumor suppressor in several human cancers. It targets a number of proto-oncogenes, including insulin-like growth factor-1 receptor (IGF1R) [9] epidermal growth factor receptor (EGFR) [10], p21-activated kinase 1 (Pak1) and associated cdc42 kinase 1 (Ack1) [11]. It′s demonstrated that overexpression of miR-7 inhibited schwannoma cell growth both in culture and in xenograft tumor models in vivo, which correlated with downregulation of EGFR, Pak1 and Ack1 [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    • "miR-7 has been characterized as a tumor suppressor in several human cancers that targets epidermal growth factor receptor, p21-activated kinase 1, and other genes.24 Liu et al demonstrated that miR-7 suppressed cell growth and induced apoptosis in cervical cancer cells.25 miR-7 downregulation was reported to be associated with epithelial-to-mesenchymal transition and metastasis in breast cancer.26 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis using publicly available algorithms predicts that X-ray repair complementing defective repair in Chinese hamster cells 2 (XRCC2), a key component in the homologous recombination repair pathway, is a potential target of micro-ribonucleic acid-7 (miR-7). Some studies have shown that both miR-7 and XRCC2 are associated with cancer development. For this purpose, we searched for the possible relationship between miR-7 and XRCC2 in the development of colorectal cancer (CRC). miR-7 expression was assessed in CRC specimens and cell lines using real-time polymerase chain reaction (PCR). Luciferase reporter assay was used to confirm the target associations. The effect of miR-7 on cell proliferation and apoptosis was confirmed in vitro by the methylthiazol tetrazolium (MTT) assay, colony formation assay, and flow cytometry. Gene and protein expression were examined using real time PCR and western blotting, respectively. miR-7 was downregulated in CRC specimens and cell lines, and targeted the 3' untranslated region of XRCC2. miR-7 overexpression reduced cyclin D1 expression and increased p21, caspase-3, and BAX expression, which subsequently inhibited CRC cell proliferation and induced CRC cell apoptosis. However, XRCC2 can repress the inhibitory effects of miR-7 on proliferation. Our findings suggest that miR-7 plays a protective role by inhibiting proliferation and increasing apoptosis of CRC cells. It may identify new targets for anti-cancer treatment.
    Full-text · Article · Feb 2014 · OncoTargets and Therapy
Show more