Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method

ArticleinThe Review of scientific instruments 81(11):114901 · November 2010with12 Reads
DOI: 10.1063/1.3499504 · Source: PubMed
Abstract
Previously, we introduced the double scan technique, which enables quantitative temperature profiling with a scanning thermal microscope (SThM) without distortion arising from heat transfer through the air. However, if the tip-sample thermal conductance is disturbed due to the extremely small size of the sample, such as carbon nanotubes, or an abrupt change in the topography, then quantitative measurement becomes difficult even with the double scan technique. Here, we developed the null-point method by which one can quantitatively measure the temperature of a sample without disturbances arising from the tip-sample thermal conductance, based on the principle of the double scan technique. We first checked the effectiveness and accuracy of the null-point method using 5 μm and 400 nm wide aluminum lines. Then, we quantitatively measured the temperature of electrically heated multiwall carbon nanotubes using the null-point method. Since the null-point method has an extremely high spatial resolution of SThM and is free from disturbance due to the tip-sample thermal contact resistance, and distortion due to heat transfer through the air, the method is expected to be widely applicable for the thermal characterization of many nanomaterials and nanodevices.

Do you want to read the rest of this article?

Article
August 2010
    Despite the high spatial resolution of scanning thermal microscope, its usefulness has been limited because of its lack of quantitative measurement. In this study, utilizing the principle of double scan technique, we developed the null-point method by which one can measure the temperature of a nanoscale sample quantitatively without the disturbances due to the heat transfer through the air and... [Show full abstract]
    Article
    November 2011 · ACS Nano
      Because of its high spatial resolution, scanning thermal microscopy (SThM) has been developed quite actively and applied in such diverse areas as microelectronics, optoelectronics, polymers, and carbon nanotubes for more than a decade since the 1990s. However, despite its long history and diverse areas of application, surprisingly, no quantitative profiling method has been established yet.... [Show full abstract]
      Article
        We develop and demonstrate the theory and method of null-point scanning thermal microscopy, which can obtain quantitative temperature profiles even when the heat conductance between the tip and the sample is disturbed due to abrupt changes in the surface topography or properties. Due to its generality, it would be widely applicable for a variety of problems associated with the thermal... [Show full abstract]
        Article
          The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we... [Show full abstract]
          Discover more