Article

Induced Pluripotent Stem Cells from Individuals with Recessive Dystrophic Epidermolysis Bullosa

Division of Hematology-Oncology, Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Journal of Investigative Dermatology (Impact Factor: 7.22). 12/2010; 131(4):848-56. DOI: 10.1038/jid.2010.346
Source: PubMed

ABSTRACT

Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited blistering skin disorder caused by mutations in the COL7A1 gene-encoding type VII collagen (Col7), the major component of anchoring fibrils at the dermal-epidermal junction. Individuals with RDEB develop painful blisters and mucosal erosions, and currently, there are no effective forms of therapy. Nevertheless, some advances in patient therapy are being made, and cell-based therapies with mesenchymal and hematopoietic cells have shown promise in early clinical trials. To establish a foundation for personalized, gene-corrected, patient-specific cell transfer, we generated induced pluripotent stem (iPS) cells from three subjects with RDEB (RDEB iPS cells). We found that Col7 was not required for stem cell renewal and that RDEB iPS cells could be differentiated into both hematopoietic and nonhematopoietic lineages. The specific epigenetic profile associated with de-differentiation of RDEB fibroblasts and keratinocytes into RDEB iPS cells was similar to that observed in wild-type (WT) iPS cells. Importantly, human WT and RDEB iPS cells differentiated in vivo into structures resembling the skin. Gene-corrected RDEB iPS cells expressed Col7. These data identify the potential of RDEB iPS cells to generate autologous hematopoietic grafts and skin cells with the inherent capacity to treat skin and mucosal erosions that typify this genodermatosis.

  • Source
    • "As a consequence, RDEB patients have extensive chronic wounds that can ultimately lead to death by invasive squamous cell carcinomas (Fine et al, 2009). Second, the severity of the disease has led to major therapeutic adventures like the transplantation of allogeneic bone marrow stem cells (Wagner et al, 2010), resulting in several patients' death (Tolar & Wagner, 2012, 2013) and other unconventional therapeutic alternatives (Woodley et al, 2007; Wong et al, 2008; Remington et al, 2009; Siprashvili et al, 2010; Itoh et al, 2011; Tolar et al, 2011). Third, we have demonstrated that a clone of human keratinocytes can produce COLVII and participate in the formation of anchoring fibrils (Regauer et al, 1990). "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.
    Full-text · Article · Feb 2015 · EMBO Molecular Medicine
  • Source
    • "To date, iPSCs for various genetic diseases have been developed, such as for certain type of Parkinson's disease [5], spinal muscular atrophy [6], lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth, and deafness (LEOPARD) syndrome [7], long Q-T syndrome [8], Timothy syndrome [9], Hurler syndrome [10], epidermolysis bullosa [11], and thalassemia [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient's own cell can be developed. However, iPSC from the patients's cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.
    Full-text · Article · Feb 2012
  • Source
    • "Keratinocyte-derived human iPS cells could be differentiated into pancreatic endoderm with an efficiency that was comparable to that for human embryonic stem cells (Santamaria et al, 2010). Recent reports demonstrate that iPS cells can differentiate into keratinocytes (Bilousova et al, 2011; Tolar et al, 2011). The advantages of iPS cells over embryonic stem cells for regeneration therapy include the lack of ethical issues and, since iPS cells can be autologous, the elimination of immune rejection concerns. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The past 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cells include defining molecular markers for stem and progenitor sub-populations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy.
    Full-text · Article · Dec 2011 · Journal of Investigative Dermatology
Show more