An evaluation of power to detect low-frequency variant associations using allele-matching tests that account for uncertainty.

Wellcome Trust Sanger Institute, Hinxton, CB10 1HH, UK. .
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 01/2011; DOI: 10.1142/9789814335058_0011
Source: DBLP


There is growing interest in the role of rare variants in multifactorial disease etiology, and increasing evidence that rare variants are associated with complex traits. Single SNP tests are underpowered in rare variant association analyses, so locus-based tests must be used. Quality scores at both the SNP and genotype level are available for sequencing data and they are rarely accounted for. A locus-based method that has high power in the presence of rare variants is extended to incorporate such quality scores as weights, and its power is compared with the original method via a simulation study. Preliminary results suggest that taking uncertainty into account does not improve the power.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensitivity to pain varies considerably between individuals and is known to be heritable. Increased sensitivity to experimental pain is a risk factor for developing chronic pain, a common and debilitating but poorly understood symptom. To understand mechanisms underlying pain sensitivity and to search for rare gene variants (MAF<5%) influencing pain sensitivity, we explored the genetic variation in individuals' responses to experimental pain. Quantitative sensory testing to heat pain was performed in 2,500 volunteers from TwinsUK (TUK): exome sequencing to a depth of 70× was carried out on DNA from singletons at the high and low ends of the heat pain sensitivity distribution in two separate subsamples. Thus in TUK1, 101 pain-sensitive and 102 pain-insensitive were examined, while in TUK2 there were 114 and 96 individuals respectively. A combination of methods was used to test the association between rare variants and pain sensitivity, and the function of the genes identified was explored using network analysis. Using causal reasoning analysis on the genes with different patterns of SNVs by pain sensitivity status, we observed a significant enrichment of variants in genes of the angiotensin pathway (Bonferroni corrected p = 3.8×10(-4)). This pathway is already implicated in animal models and human studies of pain, supporting the notion that it may provide fruitful new targets in pain management. The approach of sequencing extreme exome variation in normal individuals has provided important insights into gene networks mediating pain sensitivity in humans and will be applicable to other common complex traits.
    Full-text · Article · Dec 2012 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last years, both sequencing and microarray have been widely used to search for relations between genetic variations and predisposition to complex pathologies such as diabetes or neurological disorders. These studies, however, have been able to explain only a small fraction of disease heritability, possibly because complex pathologies cannot be referred to few dysfunctional genes, but are rather heterogeneous and multi-causal, as a result of a combination of rare and common variants possibly impairing multiple regulatory pathways. Rare variants, though, are difficult to detect, especially when the effects of causal variants are in different directions, i.e. with protective and detrimental effects. Here we propose ABACUS, an Algorithm based on a BivAriate CUmulative Statistic to identify SNPs significantly associated with a disease within predefined sets of SNPs such as pathways or genomic regions. ABACUS is robust to the concurrent presence of SNPs with protective and detrimental effects and of common and rare variants; moreover it is powerful even when few SNPs in the SNP-set are associated with the phenotype. We assessed ABACUS performance on simulated and real data and compared it with three state-of-the-art methods. When ABACUS was applied to type 1 and 2 diabetes data, besides observing a wide overlap with already known associations, we found a number of biologically sound pathways, which might shed light on diabetes mechanism and etiology. ABACUS is available at CONTACT:
    Preview · Article · Nov 2013 · Bioinformatics