Isotopomer enrichment assay for very short chain fatty acids and its metabolic applications

Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, W-G48, Cleveland, OH 44106-4954, USA.
Analytical Biochemistry (Impact Factor: 2.22). 03/2011; 410(1):110-7. DOI: 10.1016/j.ab.2010.11.030
Source: PubMed


The present work illustrated an accurate GC/MS measurement for the low isotopomer enrichment assay of formic acid, acetic acid, propionic aicd, butyric acid, and pentanoic acid. The pentafluorobenzyl bromide derivatives of these very short chain fatty acids have high sensitivity of isotopoic enrichment due to their low natural isotopomer distribution in negative chemical ionization mass spectrometric mode. Pentafluorobenzyl bromide derivatization reaction was optimized in terms of pH, temperature, reaction time, and the amount of pentafluorobenzyl bromide versus sample. The precision, stability, and accuracy of this method for the isotopomer analysis were validated. This method was applied to measure the enrichments of formic acid, acetic acid, and propionic acid in the perfusate from rat liver exposed to Krebs-Ringer bicarbonate buffer only, 0-1mM [3,4-(13)C(2)]-4-hydroxynonanoate, and 0-2mM [5,6,7-(13)C(3)]heptanoate. The enrichments of acetic acid and propionic acid in the perfusate are comparable to the labeling pattern of acetyl-CoA and propionyl-CoA in the rat liver tissues. The enrichment of the acetic acid assay is much more sensitive and precise than the enrichment of acetyl-CoA by LC-MS/MS. The reversibility of propionyl-CoA from succinyl-CoA was confirmed by the low labeling of M1 and M2 of propionic acid from [5,6,7-(13)C(3)]heptanoate perfusates.

Download full-text


Available from: Sushabhan Sadhukhan, Mar 17, 2014
  • Source
    • "Correction of raw mass isotopic profiles for natural enrichment at each mass was conducted using the matrix correction method [40]. Statistical differences were tested using a paired Student t test (GraphPad Prism version 3). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The major route for elimination of 4-hydroxy-2-(E)-nonenal (4-HNE) has long been considered to be through glutathionylation and eventual excretion as a mercapturic acid conjugate. To better quantitate the glutathionylation process, we developed a sensitive LC-MS/MS method for the detection of glutathione (GSH) conjugates of 4-hydroxy-2-(E)-alkenal enantiomers having carbon skeleton of C-5 to C-12. The newly developed method enabled us to quantify 4-hydroxy-2-(E)-alkenal-glutathione diastereomers in various organs, i.e. liver, heart and brain. We identified the addition of iodoacetic acid as a critical step during sample preparation to avoid an overestimation of glutathione-alkenal conjugation. Specifically, we found that in the absence of a quenching step reduced GSH and 4-hydroxy-2-(E)-alkenals react very rapidly during the extraction and concentration steps of sample preparation. Rat liver perfused with d11-4-hydroxy-2-(E)-nonenal (d11-4-HNE) revealed enantioselective conjugation with GSH and transportation out of the liver. In the d11-4-HNE perfused rat livers, the amount of d11-(S)-4-HNE-GSH released from the rat liver is higher than the d11-(R)-4-HNE-GSH, and more d11-(R)-4-HNE-GSH than d11-(S)-4-HNE-GSH remained in the perfused liver tissues. Overall, the glutathionylation pathway was found to account for only 8.7% of the disposition of 4-HNE, whereas catabolism to acetyl-CoA, propionyl-CoA, and formate represented the major detoxification pathway.
    Full-text · Article · Feb 2014 · Free Radical Biology and Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium levulinate (4-ketopentanoate) is used as an oral and parenteral source of calcium. We hypothesized that levulinate is converted in the liver to 4-hydroxypentanoate, a new drug of abuse, and that this conversion is accelerated by ethanol oxidation. We confirmed these hypotheses in live rats, perfused rat livers, and liver subcellular preparations. Levulinate is reduced to (R)-4-hydroxypentanoate by a cytosolic and a mitochondrial dehydrogenase, which are NADPH- and NADH-dependent, respectively. A mitochondrial dehydrogenase or racemase system also forms (S)-4-hydroxypentanoate. In livers perfused with [13C5]levulinate, there was substantial CoA trapping in levulinyl-CoA, 4-hydroxypentanoyl-CoA, and 4-phosphopentanoyl-CoA. This CoA trapping was increased by ethanol, with a 6-fold increase in the concentration of 4-phosphopentanoyl-CoA. Levulinate is catabolized by 3 parallel pathways to propionyl-CoA, acetyl-CoA, and lactate. Most intermediates of the 3 pathways were identified by mass isotopomer analysis and metabolomics. The production of 4-hydroxypentanoate from levulinate and its stimulation by ethanol is a potential public health concern.
    Full-text · Article · Feb 2011 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple, low cost, fast and sensitive method is reported for the determination of the four endocrine disrupting chemicals (EDCs) 4-tert-butylphenol, 4-tert-octylphenol, bisphenol A and 17β-estradiol using pentafluoropyridine as the derivatizing reagent. These EDCs were determined by simultaneous extraction and derivatization in a solid phase analytical derivatization (SPAD) technique without the aid of any phase transfer catalyst (PTC) or an ion-pair mechanism. Recoveries of analytes as their tetrafluoropyridyl derivatives from water ranged from 71% for 4-tert-butylphenol to 106% for 17β-estradiol; from urine they ranged from 61% for 17β-estradiol to 91% for 4-tert-octylphenol; and from humic acids solution the ranged from 59% for 17β-estradiol to 104% for 4-tert-octylphenol in humic acid solutions. Calibration curves were constructed from a matrix of human male urine in the range 1-40 ng/mL and had coefficients of correlation greater than 0.99. For 4-tert-butylphenol, bisphenol A and 17β-estradiol the limits of quantitation were 5 ng/mL and for 4-tert-octylphenol it was 1 ng/mL. This method was applied to determine EDCs and detected 4-tert-octylphenol, bisphenol A and 17β-estradiol in concentrations comparable to those found in the literature. The method offers advantages in speed of analysis, reduced reagent and specificity of derivatization.
    Full-text · Article · Nov 2011 · Journal of Chromatography A
Show more