The Pathogenesis of Systemic Sclerosis

Department of Medicine, University of California, San Francisco, 94143, USA.
Annual Review of Pathology Mechanisms of Disease (Impact Factor: 18.75). 02/2011; 6(1):509-37. DOI: 10.1146/annurev-pathol-011110-130312
Source: PubMed


Systemic sclerosis (SSc), also known as scleroderma, is a rare connective tissue disease characterized by vascular and immune dysfunction, leading to fibrosis that can damage multiple organs. Its pathogenesis is complex and poorly understood. Two major clinical subtypes are the limited and diffuse forms. Research into SSc has been hampered by its rarity, its clinical heterogeneity, and the lack of mouse models that accurately recapitulate the disease. Clinical and basic studies have yielded some mechanistic clues regarding pathogenesis. Recent insights gained through the use of microarrays have revealed distinctive subsets of SSc within and beyond the limited and diffuse subsets. In this review, we discuss potential mechanisms underlying the vascular, autoimmune, and fibrotic points of dysregulation. Proper categorization of SSc patients for research studies by use of microarrays or other biomarkers is critical, as disease heterogeneity may explain some of the inconsistencies of prior studies.

14 Reads
  • Source
    • "Combined with the consistent targeting of PB/SG described here spanning all SSc patients, these data suggest a basic model in which disease-specific pathologies give rise to specific autoantibodies. Strong induction of SGs is observed in response to cellular stresses, including oxidative stress and ischemia, two well-established phenomena in SSc[27]. SG/PB are also readily induced in response to the tumor microenvironment , consistent with recent evidence linking RNAP3- positive SSc and cancer[5,30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autoantibody profiles represent important patient stratification markers in systemic sclerosis (SSc). Here, we performed serum-immunoprecipitations with patient antibodies followed by mass spectrometry (LC-MS/MS) to obtain an unbiased view of all possible autoantibody targets and their associated molecular complexes recognized by SSc. HeLa whole cell lysates were immunoprecipitated (IP) using sera of patients with SSc clinically positive for autoantibodies against RNA polymerase III (RNAP3), topoisomerase 1 (TOP1), and centromere proteins (CENP). IP eluates were then analyzed by LC-MS/MS to identify novel proteins and complexes targeted in SSc. Target proteins were examined using a functional interaction network to identify major macromolecular complexes, with direct targets validated by IP-Western blots and immunofluorescence. A wide range of peptides were detected across patients in each clinical autoantibody group. Each group contained peptides representing a broad spectrum of proteins in large macromolecular complexes, with significant overlap between groups. Network analyses revealed significant enrichment for proteins in RNA processing bodies (PB) and cytosolic stress granules (SG) across all SSc subtypes, which were confirmed by both Western blot and immunofluorescence. While strong reactivity was observed against major SSc autoantigens, such as RNAP3 and TOP1, there was overlap between groups with widespread reactivity seen against multiple proteins. Identification of PB and SG as major targets of the humoral immune response represents a novel SSc autoantigen and suggests a model in which a combination of chronic and acute cellular stresses result in aberrant cell death, leading to autoantibody generation directed against macromolecular nucleic acid-protein complexes.
    Preview · Article · Dec 2016 · Arthritis research & therapy
  • Source
    • "It is relatively rare, affecting between 50,000 and 100,000 North Americans, and up to 250,000 Europeans [1] [2]. Although less common than other rheumatic diseases, it has one of the highest mortality rates [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The chitinase-like protein, Chi3L1, is associated with increased fibrotic activity as well as inflammatory processes. The capacity of skin cells from systemic sclerosis (SSc) patients to produce Chi3L1, and the stimulation of its synthesis by cytokines or growth factors known to be associated with SSc, was investigated. Methods: Cells were isolated from forearm and/or abdomen skin biopsies taken from SSc patients and normal individuals and stimulated with cytokines and growth factors to assess Chi3L1 expression. Chi3L1-expressing cells were characterized by immunohistochemical staining. Results: Chi3L1 was not secreted by skin cells from normal individuals nor was its synthesis induced by any of the cytokines or growth factors investigated. In contrast, Chi3L1 secretion was induced by OSM or IL-1 in cells from all forearm biopsies of SSc patients, and endogenous secretion in the absence of cytokines was detected in several specimens. Patients with Chi3L1-producing cells at both the arm and abdomen had a disease duration of less than 3. years. Endogenous Chi3L1 production was not a property of the major fibroblast population nor of myofibroblasts, but rather was related to the presence of stem-like cells not present in normal skin. Other cells, however, contributed to the upregulation of Chi3L1 by OSM. Conclusions: The emergence of cells primed to respond to OSM with increased Chi3L1 production appears to be associated with pathological processes active in SSc. General significance: The presence of progenitor cells expressing the chilectin Chi3L1 in SSc skin appears to play a role in the initiation of the disease process.
    Full-text · Article · Jun 2014 · Biochimica et Biophysica Acta - Clinical
  • Source
    • "Systemic sclerosis (SSc) is an autoimmune multisystem disease of unknown etiology, characterized by structural abnormalities in small blood vessels and excessive deposition of extracellular matrix components [1,2]. Patients with diffuse SSc have a greater likelihood of organ damage, reduced quality of life, and long-term morbidity and mortality, leading to a high economic and patient burden [3,4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type I interferons (IFNs) are implicated in the pathogenesis of systemic sclerosis (SSc). MEDI-546 is an investigational human monoclonal antibody directed against the type I IFN receptor. This Phase 1 study evaluated the safety/tolerability, pharmacokinetics (PK), immunogenicity, and pharmacodynamics (PD) of single and multiple intravenous doses of MEDI-546 in adults with SSc. Subjects (>=18 years) with SSc were enrolled in an open-label, dose-escalation study to receive single (0.1, 0.3, 1.0, 3.0, 10.0, or 20.0 mg/kg), or 4 weekly intravenous doses (0.3, 1.0, or 5.0 mg/kg/week) of MEDI-546. Subjects were followed for 12 weeks. Safety assessments included adverse events (AEs), laboratory results, and viral monitoring. Blood samples were collected from all subjects for determination of PK, presence of anti-drug antibodies (ADAs), and expression of type I IFN-inducible genes. Of 34 subjects (mean age 47.4 years), 32 completed treatment and 33 completed the study. Overall, 148 treatment-emergent AEs (TEAEs) were reported (68.9% mild, 27.7% moderate). TEAEs included one grade 1 infusion reaction (5.0 mg/kg/week multiple dose). Of 4 treatment-emergent serious AEs (skin ulcer, osteomyelitis, vertigo, and chronic myelogenous leukemia (CML)), only CML (1.0 mg/kg/week multiple dose) was considered possibly treatment-related. MEDI-546 exhibited non-linear PK at lower doses. ADAs were detected in 5 subjects; no apparent impact on PK was observed. Peak inhibition of the type I IFN signature in whole blood was achieved within 1 day and in skin after 7 days. The safety/tolerability, PK, and PD profiles observed in this study support further clinical development of MEDI-546.Trial Registration: NCT00930683.
    Full-text · Article · Feb 2014 · Arthritis research & therapy
Show more