Content uploaded by Guillermo Macbeth
Author content
All content in this area was uploaded by Guillermo Macbeth
Content may be subject to copyright.
Available via license: CC BY 4.0
Content may be subject to copyright.
TutorialsinQuantitativeMethodsforPsychology
2009,Vol.5(1),p.25‐34.
ComputingEffectSizeMeasureswith
ViSta‐TheVisualStatisticsSystem
RubénDanielLedesma,GuillermoMacbeth
CONICET/UniversidadNacionaldeMardelPlataCONICET/UniversidaddelSalvador,Argentina
NuriaCortadadeKohan
UniversidaddeBuenosAires,Argentina
Effectsizemeasuresarerecognizedasanecessarycomplementtostatisticalhypothesis
testingbecausetheyprovideimportantinformationthatsuchtestsalonecannotoffer.
Inthispaperwe:a)brieflyreviewtheimportanceofeffectsizemeasures,b)describe
somecalculationalgorithmsforthecaseofthedifferencebetweentwomeans,andc)
provideanewandeasy‐to‐usecomputerprogramtoperformthesecalculationswithin
ViSta“TheVisualStatisticsSystem”.Aworkedexampleisalsoprovidedtoillustrate
somepracticalissuesconcerningtheinterpretationandlimitsofeffectsize
computation.TheaudienceforthispaperincludesnoviceresearchersaswellasViSta’s
userinterestedonapplyingeffectsizemeasures.
Inpsychologicalresearch,EffectSize(ES)measures
constituteanecessarycomplementtostatisticalsignificance
hypothesistesting(Thompson,1994,1998).Inthisworkwe:
(a)reviewtheimportanceofESmeasures;(b)describesome
calculationalgorithmsusedtoestimatethesemeasuresin
caseofadifferencebetweentwomeans;and(c)presentan
easy‐to‐usecomputersoftwaretoperformthesecalculations
withintheViStastatisticalsystem.Itishopedthispaperwill
helpincreaseawarenessofthesemethodologiesand
facilitateaccesstotheITtoolsnecessaryfortheir
application.
EffectSizeMeasures
Inpsychologicalresearch,ESrepresentsawayto
measureorquantifytheeffectivenessofanintervention,
treatmentorprogram.EScanalsobedescribedasthe
RubénDanielLedesma,RíoNegro3922,MardelPlata
(7600),Argentina,rdledesma@gmail.com,tel:+54223
4752266.ASpanishtutorialforapreliminaryversionofthis
softwarehasbeenpublishedinLedesma,Macbeth&
CortadadeKohan(2008).
degreeoffalsityofthenullhypothesis(Descôteaux,2007).
Thisquantificationisrequiredfordeterminingsamplesizes
andtoachievecorrectstatisticaldecisions(WilsonVan
Voorhis&Morgan,2007).ToillustratetheimportanceofES,
wewillanalyzeanexampletakenfromMoore&McCabe
(1993),whichisavailableasadataarchiveintheViSta
examplesfolder.
Supposewewishtostudytheeffectofanewteaching
activityonthereadingskillsofstudents.Astudyusingtwo
groupsisundertaken.Thenewteachingactivityisapplied
withthesubjectsofonegroup(theexperimentalgroup),
whiletheconventionalteachingactivityisappliedwiththe
subjectsoftheothergroup(thecontrolgroup).Afterwards,
bothgroupsaregivenareadingtest,withthescoresofthe
readingtestconstitutingthedependentvariableYinthe
study.Table1showstheresultsoftheexperiment.
Inthiscase,theresultsofthet‐testshowsasignificant
differencebetweenthemeansofthegroups,leadingthe
researchertorejectthenullhypothesisthatpredictedequal
means,orthe“0”effectofthetreatment(thenewteaching
activity).But,whatisthemagnitudeoftheobserved
difference?Isthisdifferencesignificantinpracticalterms?
Towhatextentisthenewteachingactivitybetter?These
25
26
typesofquestionscanbeansweredapplyingESmeasures.
Itisworthnotingthatstatisticalsignificancedoesnot
necessarilyinformtheresearcherabouttheimportanceor
magnitudeoftheeffect.Theclassicalhypothesistesting
modelseekstodeterminewhetherornottorejectthe
hypothesisthatmaintainsthattheeffectisnon‐existent
(Frías‐Navarro,Llobell&García‐Pérez,2000;Gigerenzer,
1993).Therefore,ifthenullhypothesisisrejected,the
researchercanonlyconcludethattheeffectissignificantly
differentfrom“0”,which,forallpracticalmatters,isof
limitedusefulness(Krueger,2001).Furthermore,statistical
significanceisnotadirectindicatorofES,butrathera
functionalrelationbetweenthesamplesize,theESandthep
value(Descôteaux,2007).Forthisreason,aweakESmay
appearasstatisticallysignificantifthesamplesizeis
sufficientlylarge;and,conversely,aneffectiveintervention
maynotappearasstatisticallysignificantifthesamplesize
issmall(WilsonVanVoorhis&Morgan,2007).
Abetterindicatoroftheimpactofthenewteaching
activitycanbeobtainedthroughastandardizedmeasureof
thedifferencebetweenthemeansofthegroups.For
example,thefollowingmeasurecouldbeapplied(Cohen,
1969,1988,1994):
ec
YY
d
σ
−
=(1)
Inthisequation,e
Yandc
Yrepresentthemeansofthe
dependentvariableYoftheexperimentalandcontrol
groups,respectively,andσistheaveragestandard
deviationforbothgroups,that
is, 22
11.007 14.628 / 2 12.945+=.Inaccordancewiththe
exampleillustratedinTable1,weobtain:
51.476 39.545
12.945
d−0.922==
Thisstandardizedmeasureofthedifferencebetweenthe
meansknownasCohen´sdconstitutesapossibleestimation
oftheES,andoffersvariouspracticaladvantages.First,itis
easiertoworkwith,sinceitcanbeinterpretedsimplyasaz
score.Itindicatesthedifferencebetweenthegroupsinunits
ofstandarddeviation.Forexample,ifd=1,thismeansthat
themeanoftheexperimentalgroupis1standarddeviation
awayfromthemeanofthecontrolgroup.Ifweconsiderdas
azscore,wecanalsoapplythetransformationtopercentiles
andobtainanalternativeinterpretation.Continuingwith
thesameexample,wecanstatethatthedistributionofthe
experimentalgroup’sscoresbettersthedistributionofthe
controlgroup’sscoresby82%,becausethatistheareaunder
thenormalcurvethatcorrespondstoazscore=.92.Another
importantadvantageofthisESmeasureisthatitprovidesa
commonmeasuringsticktocomparetherelativeimportance
ofinterventionsandprogramsacrossdifferentresearch
studies,e.g.inmeta‐analyticalstudies(Anderson,1999).
Table1.Resultfromthehypotheticalexperimentfrom
Moore&McCabe(1993).
GroupnMeanS.D.
Experim e nt a l21 51.47611.00 7
Control2239.54514.628
t(41)=3.01, p<.01
SomeLimitationsontheUseofEffectSize
DespitetheadvantagesofESmeasures,manyauthors
havenotedthattheiruseislimitedinpractice(Coe,2002;
Descôteaux,2007;Frías‐Navarroetal.,2000;Alhija&Levy,
2008).Thisissoeventhoughsomeinstitutions,likethe
AmericanPsychologicalAssociation,haverecommended
andpromotedtheiruse(Thompson,1998).Similarly,many
publicationspresentlyrequireresearcherstoprovideES
measurestogetherwiththeirstatisticalsignificancetests
(Hunter&Schmidt,2004).ArecentreviewonESreporting
practicesin10educationalresearchjournalsintheyears
2003and2004foundnodifferencebetweenjournalsthat
requireESreportsandjournalsthathavenosuchpolicy
(Alhija&Levy,2008).AlthoughtheESestimateswere
similarlyreportedinboth,thediscrepanciesbetweenp‐
valuedrawnconclusionsandESdrawnconclusionswere
notoftendiscussed.Sun(2008)conductedacompressive
reviewonESreportingpracticesof1,243studiespublished
in14academicjournalsfrom2005to2007andfoundthat
49.1%ofthearticlesreportedESand56.7%ofthem
interpretedES.Theauthorconcludesthat“itisnecessaryfor
theacademicjournals,leadingscholars,andacademic
associationstocontinuetourgetheimprovementofeffect
sizereportingandinterpretingpractices”.Intherealworld
therearelikelyvariousexplanationsforwhyESmeasures
arenotcommonlyused.Historicalcircumstances
(Descôteaux,2007),thelackofESinthemostpopular
statisticalsoftwarepackagesandtheabsenceofthetopicin
coursesandmanuals(Coe,2002)explain,inpart,the
infrequentuseofthesemethodologies.
EffectSizeMeasures:TheDifference‐Between‐Two‐
MeansCase
Toanalyzethemagnitudeoftheeffectinourexample
wecouldsimplycomparethemeanofthedependent
variableYintheexperimentalgrouptoitscounterpartinthe
controlgroupinordertodetermineifthereisadifference
(di)betweenthem(Equation2):
e
di Y Yc
=
−(2)
27
Thedifference(di)betweenthemeansofbothgroups
generatedbyequation2isnotstableandhomogenous
becauseitdependsontheunitofmeasureofthedependent
variable.Thisrawdifference(di)ismuchtoounreliableto
provideanyusefulinformation,andsoitbehoovesthe
researchertostandardizeitinsomeway.Asweshallsee
below,therearevariouspossiblewaystoachievethis
objective.
TheMostCommonApproachesforEstimatingES
GlassʹsDelta
Thedifferencedibecomesmoreusefulifitischanged
intoazscorewhenitisstandardized.Onepossible
approachtostandardizethedifferenceisshowninequation
3,wherethedifferencebetweenthemeansisdividedbythe
standarddeviationofthecontrolgroup(Sc):
ec
c
YY
Delta S
−
=(3)
Thisformula,knownasGlassʹsDelta(Glass,McGaw&
Smith,1981),canbeusedasanestimatorofthepopulation
parameterΔofequation4:
ec
c
μ
μ
σ
−
Δ= (4)
Inequation4,thevaluese
μ
andc
μ
refertothepopulation
meansofthedependentvariableYintheexperimentaland
controlgroups,respectively.c
σ
referstothepopulation
standarddeviationofthecontrolgroup.Δisthepopulation
parameterthatisbeingestimatedthroughthecalculationof
thesamplestatisticinequation3.
Hedgesʹsg
GlassʹsDeltastandardizesthedifferencebetweenthe
groupsthroughthestandarddeviationofthecontrolgroup
Sc,asindicatedinEquation3.Nonetheless,thegross
differencebetweenthemeansdependsonthevarianceof
bothgroups.Forthisreason,GlassʹsDeltaisonlyslightly
affectedbydifferencesinvariabilitybetweenthe
experimentalandcontrolgroups.Thischaracteristiccan
generatebiasintheESestimationwhenthevariability
withineachgroupisdifferent.ThisiswhyHedgesproposed
changingthestandarddeviationoftheexperimentalgroup
Scforameasurebasedonthevariabilityofbothgroups
(Grissom&Kim,2005).Thispathprovidesapooled
standarddeviationSpbycombiningthedatafromthe
experimentalandcontrolgroupsinasinglemeasurethat
doesnotassumevariancehomogeneity.
ThepooledstandarddeviationintheHedges’Spformula
iscalculatedviaequation5:
22
(1)(1)
2
eec
p
ec
nSnS
Snn
−+−
=+−
c
2
e
2
c
(5)
Spaccountsforboththeinternalvariabilityofeachgroup
(S,S)aswellasthesizeofeachgroup(ne,nc)when
estimatingES.ThismeasureislessbiasedthanGlass’sDelta
whennotassumingequalvariances.Theuseofthepooled
standarddeviationSptocalculateESwhencomparingtwo
independentgroupsisknownasHedges’g(Equation6):
ec
p
YY
gS
−
=(6)
Hedges’gisanestimationofthecorrespondingpopulation
G,indicatedinEquation7:
ec
G
μ
μ
σ
−
=(7)
BothGlass’sDeltaandHedges’ghaveapositivebias,
whichmeanstheyoverestimatetheES.Toadjustforthis
bias,Hedgesproposedagajust,whichiscalculatedusing
Equation8.
3
141
ajust
gg df
⎡
⎤
=−
⎢
⎥
−
⎣
⎦
(8)
Thegreaterthedegreesoffreedomdf,thelesserthe
adjustmentnecessarytoestimatealessbiasedES,ascanbe
deducedfromEquation8.
Cohen’sd
Cohen’sd(1988,1994)isoneofthemostwidelyused
measuresinspecializedpublicationstocalculateES,andin
meta‐analyticalstudies(Anderson,1999;Hunter&Schmidt,
2004).Tocalculateit,seeEquation1.Cohen’sdcanalsobe
calculatedfromt‐testresults(Thalheimer&Cook,2002).For
example,knowingthetvalueandthesizeofeachgroup,the
equationwouldbe:
2
ec ec
ec e c
nn nn
dt nn n n
⎛⎞⎛
++
=⎜⎟⎜
⎜⎟⎜
+−
⎝⎠⎝
⎞
⎟
⎟
⎠
(9)
ThistypeofconversionisusefultocomputeESfrom
researchpapersthatonlyreportresultsbasedont‐test.
ThealternativeusesofCohen’sd,Hedges’gorGlass’s
Deltadependonthepropertiesofthestandarddeviationof
thetwocomparedgroups.Itisassumedthatbothstandard
deviationsareestimatesofthesamepopulationvaluewhen
dandgarecalculated(Coe,2002).Whenthedifference
betweenbothdoesnotdependonlyonsamplingvariation,
thenthestandarddeviationofthecontrolgroupandthe
calculationofGlass’sDeltawouldbeabetterchoice.Inthis
case,thevariabilityofthegroupthatwasnotaffectedby
anyexperimentalmanipulationgivesamoreaccurate
approximationtothepopulationstandarddeviation.
OtherESMeasures
TheCLESStatistic
McGrawandWong(1992)proposeanothermethodto
estimatetheESwhencomparingtwomeansofindependent
28
samples:theCLES(CommonLanguageEffectSize)statistic.
Thisstatisticiseasiertointerpretthantheothers,giventhat
themagnitudeofthedifferenceisexpressedasaprobability.
Moreprecisely,theCLESstatisticestimatestheprobability
thatarandomlyselectedindividualfromtheexperimental
groupwillhaveahigherscorethanarandomlyselected
individualfromthecontrolgroup(Valera‐Espín&Sánchez‐
Meca,1997).Tocalculateit,thezscorefromEquation10is
needed:
22
c
e
ec
YY
Z
SS
−
=+
(10)
Afterwards,ithastobefoundinthetypicalnormal
distribution,theprobabilityofavaluelessthantheone
obtainedinthepreviousequation.Intheproposedexample,
thiswouldbe:
22
51.47639.545 0.652
11.007 14.628
Z−
=
+=
,andp(Z<0.652)=0.743
Thisresultiseasilyinterpreted,i.e.74.3%ofthetime,a
randomlypickedsubjectfromtheexperimentalgroupwill
haveavaluegreaterthanarandomlypickedsubjectfrom
thecontrolgroup.Further,thisconversionoftheEStoa
probabilitycouldalsobeappliedtootherstandardformsof
ESestimation,suchasCohen’sd,soastohaveamore
universalformofinterpretation.
d‐to‐rConversion
Anothermeasurethatisdirectandsimpletointerpretis
theconversionofCohen’sdtor.Thelatteristhebiserial
correlationbetweenanindependentbinaryvariableXanda
dependentnumericvariableY(Cohen,1988).Xhastwo
possiblevalues(forexample,1and0),dependingon
whetheritisassociatedwithaparticipantfromthe
experimentalgroup(X=1)orthecontrolgroup(X=0).The
estimationofESthroughtheuseofrhassomeadvantages
overthepreviouslymentionedestimations;mostnotably,it
ismucheasiertointerpret.Oneimportantadvantageofr
overdistheboundedconditionoftheformer.Cohen’sd
behaveslikeazscorebutrmovesbetween‐1and+1.This
propertyfacilitatestheinterpretationofrestimatesofES.
Cohen(1988)proposesEquation11toconvertdtor.
2(1 / )
d
r
dp
=+q
(11)
Thepandqvaluescorrespondtotheproportionof
subjectsbelongingtotheexperimentalandcontrolgroups,
respectively.Inourexample,thestandardizeddifference
betweenmeansisd=0.922.Inputtingthecorresponding
valuesinEquation11,wehave:
2
0.922
0.922 (1 / 0.488 0.512)
0.922 0.922 0.42
2.20
0.850 (1 / 0.249)
r=+×
==
+
Itcanbeobservedthatthegreaterthedvalue,the
greaterthebiserialcorrelationbetweenXandY.Also,the
greaterthediscrepancybetweenpandq–whichistosay,
betweenthesizesoftheexperimentalandcontrolgroups–
thegreaterthevalueinthedenominatorinEquation11,and
sothelesserthercorrelation.
Whenthesizeofthegroupsisidentical(ne=nc),the
valueoftheterm(1/pq)is4(1/(0.5x0.5)=1/0.25=4).For
thisreason,whentheexperimentalandcontrolgroupsare
thesamesize,Equation11canbesimplifiedas:
24
d
r
d
=+
(12)
Inthegivenexample,thedifferenceinsizebetweenthe
groupsisverysmall,andsoEquation12yieldsthesamer
value:
2
0.922 0.922 0.922 0.42
2.202
4.85
0.922 4
r====
+
Rosenthal&Rubin(1982)suggestanalternativeformto
presentandinterpretthed‐to‐rconversion,whichtheycall
thebinomialeffectsizedisplay(BESD).Withthismethod,ifthe
outcomevariableisalsoreducedtoadichotomousvariable,
rcanbeinterpretedsimplyasadifferencebetween
proportions(Randolph&Edmondson,2005).
ANon‐ParametricMethod:Cliff’sDelta
Inalltheabove‐mentionedcases,theESmeasureis
sensitivetoviolationsoftheassumptionofnormality.A
morerobustmeasureforthesecaseshasbeenproposedby
Cliff(1993).Hisapproachisdifferent,giventhatneither
meansnorstandarddeviationsareusedinthecalculation;
instead,whatisconsideredisessentiallytheordinalrather
thantheintervalpropertiesofthedata(Hess&Kromrey,
2004).Specifically,theCliff’sDeltastatisticisexpressedas:
=
12 12
#( ) #( )
ʹ
Cliff s Delta xx xx
>− <
=
12
nn
Wherex1andx2arescoreswithingroup1andgroup2,and
n1andn2arethesizesofthesamplegroups.Thisstatistic
estimatestheprobabilitythatavalueselectedfromoneof
thegroupsisgreaterthanavalueselectedfromtheother
group,minusthereverseprobability.Cliffunderstandsthat
thisisameasureofdominance,aconceptthatreferstothe
degreeofoverlapbetweentwodistributions.Aneffectsize
of1.0or‐1.0indicatestheabsenceofoverlapbetweenthe
twogroups,whereasa0.0indicatesthegroupdistributions
overlapcompletely.
(13)
Thismeasurecanbeusedwhenthedatadistribution
deviategreatlyfromthenormalmodel,orwhenthevariable
beingcomparedcorrespondstoanordinallevelof
measurement.Thenon‐parametricnatureofCliff’sDelta
reducestheinfluenceoffactorssuchasthegroups’variance
29
Table2.Interpretationsof effectsizes(takenfrom:Coe,2002 ).
EffectSize
Percenta geofcont r ol
groupwhowouldbe
belowaveragepersonin
experimentalgroup
Rankofpersonina
controlgroupof 25who
wouldbeequivalentto
theaveragepers onin
experimentalgroup
Probabilitythatyou
couldguesswhi ch
groupaper so nwasin
fromknowledgeoftheir
ʹscoreʹ
BESDCLES
0.0 50% 13 th 0.50 0.00 0.50
0.1 54% 12 th 0.52 0.05 0.53
0.2 58% 11 th 0.54 0.10 0.56
0.3 62% 10 th 0.56 0.15 0.58
0.4 66% 9th 0.58 0.20 0.61
0.5 69% 8th 0.60 0.24 0.64
0.6 73% 7th 0.62 0.29 0.66
0.7 76% 6th 0.64 0.33 0.69
0.8 79% 6th 0.66 0.37 0.71
0.9 82% 5th 0.67 0.41 0.74
1.0 84% 4th 0.69 0.45 0.76
1.2 88% 3rd 0.73 0.51 0.80
1.4 92% 2nd 0.76 0.57 0.84
1.6 95% 1st
0.79 0.62 0.87
1.8 96% 1st
0.82 0.67 0.90
2.0 98% 1st (or1st
outof44) 0.84 0.71 0.92
2.5 99% 1st
(or1stoutof160) 0.89 0.78 0.96
3.0 99.9% 1st
(or1stoutof740) 0.93 0.83 0.98
differencesorthepresenceofoutliers.
InterpretingEffectSize
ThissectionsummarizespossibleESinterpretations
accordingtoCoe(2002).Table2showsCoe’sdata
(reproducedherewiththeauthor’spermission).Column1
listspossibleESvaluesfromd,Deltaorg(theycanbe
interpretedlikezscores).Nextfollowthepercentile
conversion(column2)andtheequivalentchangeinrank
orderforagroupof25(column3).Forexample,foraneffect
sizeof0.9(approximatelythatoftheexampleatthe
beginningofthispaper),thevalueof82%indicatesthatthe
averagepersonintheexperimentalgroupwouldscore
higherthan82%ofthecontrolgroup.Ifthecontrolgroup
consistedof25participants,thiswouldbethesameas
sayingthatthepersonranked5thinthisgroupwouldbe
equivalenttotheaveragepersonintheexperimentalgroup.
ThefourthcolumnofTable2showsanotherwayof
describingtheoverlapbetweenthetwogroups.Itrefersto
theprobabilitythatonecouldguesswhichgroupaperson
camefrombasedsolelyontheirtestscore.Thisprobability
equals0.50ifbothgroupsoverlapcompletely,whichmeans
ESequalszero.Theprobabilityofguessingcorrectly
increasesastheESincreases.Inourexample,witha
differencebetweenthetwogroupsequivalenttoaneffect
sizecloseto0.90,theprobabilitywouldbe0.67.
Aspreviouslyindicated,ifthedependentvariableis
reducedtoavariablewithtwocategories,theBESDmethod
canbeusedtointerpretESasadifferenceintheproportions
ineachcategory.Inourexample,thisvalueis0.41,which
means20%ofthecontrolgroupand61%ofthetreatment
groupreachedsomethresholdofsuccess.Lastly,column6
showstheCLESstatistic,whichisinterpretedaspreviously
mentioned.
Besidesthesestatisticalcriteria,somepracticalrulesfor
interpretingEShavebeensuggested.Forexample,Cohen
(1988)describesanESvalueofapproximately0.2as“small”;
anESvalueof0.5as“medium”and“largeenoughtobe
visibletothenakedeye”;andanESvalueof0.8as“grossly
perceptibleandthereforelarge”.Nevertheless,thevalueof
thisruletoappliedresearchhasbeenquestioned(Glasset
al.,1981),sincethepracticalimportanceoftheeffectsize
30
alsodependsonothervariables,suchastheeffectivenessof
other,alternativetreatmentsandthecost‐benefitanalysisof
thetreatment.
Tosummarize,EScannotbeinterpretedthesamewayin
allcases.Asingleeffectsizemeasurecanhavedifferent
practicalmeaningsdependingonthespecificproblembeing
evaluated.Forthisreason,ineachcase,relevanttheoretical
andpracticalaspectsshouldbeconsideredfortheproblem
beingstudied.Inaddition,whentheESestimatesandthep‐
valueinterpretationsleadtodifferentconclusions,
assumptionsaboutthefrequencydistributionsandstandard
deviationpropertiesshuldbecarefullyrevised(Alhija&
Levy,2008).
CalculatingESMeasuresinVista
DescriptionoftheEs‐calcModule
Es‐calcisamodulethatcanbeintegratedintotheViSta
(Young,1996)environment,andthatcanbeusedto
calculateESmeasuresfromrawdataorwithacalculatorby
inputtingthemeans,standarddeviationsandsamplesizes.
Inbothinstances,theViStastatisticalsystemisrequired.
ViStaisafree,expandablestatisticsprogramthatcanbe
usedasaplatformforthedevelopmentofnewmethodsor
toexpandthesystem’spre‐existingmethods.ViStawas
createdbyProfessorForrestW.YoungattheL.L.Thurstone
PsychometricLaboratory(UniversityofNorthCarolina,
ChapelHill).Itisanopen‐sourceprojectonwhichseveral
developerscollaborate.
Atamoretechnicallevel,wehaveutilizedXlispStat
(Tierney,1990)todeveloptheprogram’scalculation
functionsandgraphicuserinterface.XlispStatisthe
programminglanguageunderlyingtheViStasystem.
Readersinterestedinageneralreviewofthecapabilitiesand
functionalityofViStamayconsultMolina‐Ibañez,Ledesma,
Valero‐Mora&Young(2005).Amoredetailedreviewofthe
programmaybefoundinYoung,Valero‐Mora&Friendly
(2006).
Figure1.Loa dtheES‐calcfilein toViSta usingthe“Load
Lisp”command.
ApplicationScreenshots
Figure1showshowtouploadtheEffectsizefunctions
intotheViStaenvironment(SeeAppendixformoredetails
onhowtodownloadandinstallViStaandES‐Calc).
Figure2.Pa rtia l screenshotofViStadatafile.
31
Figure3.Pa rtia l screenshotofstatisticalreportgeneratedinViSta
Figure2showsapartialscreenshotofViStawithdata
correspondingtotheabove‐mentionedexample.Thistype
ofdatafilecanbecreatedinViStausingthedataeditoror,
also,byimportingthedataintextformat.
InViSta,anESestimateisperformedautomatically
whenatestforthedifferencebetweenthemeansoftwo
independentsamplesisapplied.Byitsnature,thisanalysis
onlyacceptsdataenteredwithabinaryindependent
variable—thetwogroupsbeingcompared—anda
quantitativedependentvariable,asthedataintheexample
show.Afterrunningthecommand,ViStaprovidesareport
ofresults,asshowninFigure3.Thisfigureshowsthereport
withthebasicstatisticalresultsforthemeancomparisonfor
theexample’sdata.Thefirstpartincludesdescriptive
information(groupsizes,means,standarddeviations,etc.),
whilethesecondpartshowsdifferentESestimates.Lastly,t‐
testandhomogeneityofvariancetestresultsaredisplayed.
CalculatingESfromMeans,SDsandSampleSizes
Theexamplewehavebeenusingfordemonstrative
purposeshasacompletedataset,butinsomecases,the
researchermaynothavethisinformation.Thiswouldbe
expected,forinstance,inmeta‐analyticalresearch.Forsuch
instances,theES‐calcmodulemakesitpossibletoperform
theanalysisbyusinganoptionthatonlyrequieressummary
data.ThisisavailablefromtheES‐calcitemthatappearson
theViSta’smainmenu(Figure4).Byselecting“EffectSize
fromMeansandSDs”,adialogboxwillopen,promptingthe
usertoenterthedatarequiredtocalculateESmeasures(see
Figure5).AfterprovidingthedataandclickingOK,areport
oftheresultswillappear(seeFigure6).Ascanbeseenin
Figure4,theprogramalsohastheabilitytocalculate
Cohen’sdfromthet‐testvalue.Forthispurpose,the
Equation9conversionisused.
Figure4.FindingES ‐calcinViSta’smainmenu.
32
Conclusion
Presently,thereisgeneralagreementinhighlightingthe
importanceofESasanecessarycomplementtohypothesis
testingmethodsandfordeterminingsamplesizes
(Descôteaux,2007;WilsonVanVoorhis&Morgan,2007).
Forthisreason,expertsandtheeditorialrequirementsof
specializedjournalsarestronglyencouragingtheuseof
thesetechniques.ESmeasuresallowforamoredirect
appreciationofthemagnitudeofthephenomenabeing
studied,andprovideawaytointerpretresultsmoreclearly.
Inthefieldofpsychologicalresearch,includingESinthe
analysisofdataallowsformoreinformeddecision‐making
andmoreappropriateevidence‐baseddecisions.
Additionally,thesemeasuresareakeyandnecessaryfactor
fortheintegrationofresultsinmeta‐analyticalstudies
(Hunter&Schmidt,2004).
Despitethevalueofthesemethods,itisclearthattheuse
ofESisnotwidelypracticedineducationaland
psychologicalresearch(Alhija&Levy,2008;Sun,2008;
Dunleavy,Barr,Glenn&Miller,2006).Thiscanbeattributed
toalackofawarenessaboutthesetechniques,amongother
reasons.Manyfrequentlyusedappliedstatisticsmanualsdo
notincludethemintheirmaincontent,noraretheyoften
includedingraduateandpost‐graduateeducational
programs.Similarly,themostpopularstatisticsprogramsdo
notalwayshaveanalysisoptionsforESmeasuresclearly
displayedintheirmenus.
Figure5.ES‐Calcdi alogbox.
Figure6.ES‐Cal creportofresults.
Inthiscontext,thispaperaimstocontributetotheefforts
ofinstitutionssuchastheAPAtoraiseawarenessand
encouragetheuseofESinpsychologicalresearch.Forthis
purpose,wehaveherewithprovidedareviewforthecaseof
thedifferencebetweentwomeans,andpresentedasoftware
applicationfortheViStastatisticsprogramthatisfreeand
easytouse.Wehopethatthistoolmayhelpcomplementthe
applicationofhypothesistestingmehodsandinthisway
promotetheinclusionofESmeasuresinempiricalstudies.
Additionally,thankstoitssimplicity,webelievethatES‐calc
canalsobeusefulasaneducationaltoolforteaching
statistics.PlannedexpansionsofEs‐Calcinclude:1)further
ViStadevelopmentstowardsESindexesforcategoricaldata,
2)confidenceintervalsforESmeasures,and3)statistical
dataanalysistoolsformeta‐analyticalapplications.
Lastly,wewishtowarnaboutcertainproblemsthat
couldaffecttheuseandinterpretationofESmeasuresin
practice(Coe,2002).WiththeexceptionofCliff’sDelta,the
othermeasuresarebasedontheassumptionofnormal
distributionsandequalvariancesinthegroups.
Furthermore,theresultscouldbeaffectedwhenrepeated
measuresareused(Algina&Keselman,2003),thesample
hasrestrictedrange,thedistributionisskewed,oroutliers
33
arepresentinthedataset.Forthesereasons,werecommend
thattheuserexaminethedataforthesetypesofproblems
beforeapplyingparametricESmeasures.ViStaprovides
manyalternativegraphicresourcestodothis,including
dynamichistograms,normalprobabilityplots,boxplots,etc.
References
Algina,J.&Keselman,H.J.(2003).ApproximateConfidence
IntervalsforEffectSizes.EducationalandPsychological
Measurement,63,4,537‐553.
Alhija,F.N.&LevyA.(2008).EffectSizeReportingPractices
inPublishedArticles.EducationalandPsychological
Measurement(inpress).
Anderson,G.(1999).TheRoleofMeta‐Analysisinthe
SignificanceTestControversy.EuropeanPsychologist,4(2),
75‐82.
Cliff,N.(1993).Dominancestatistics:OrdinalAnalysesto
AnswerOrdinalQuestions.PsychologicalBulletin,114,
494‐509.
Coe,R.(2002).ItʹstheEffectSize,Stupid.WhatEffectSizeis
andWhyitisImportant.PaperpresentedattheAnnual
ConferenceoftheBritishEducationalResearch
Association,UniversityofExeter,England,12‐14
September2002.
Cohen(1969).StatisticalPowerAnalysisfortheBehavioral
Sciences.SanDiego,CA:AcademicPress.
Cohen,J.(1988).StatisticalPowerAnalysisfortheBehavioral
Sciences.SecondEdition.Hillsdate,NJ:LEA.
Cohen,J.(1994).TheEarthIsRound(p<.05).American
Psychologist,49,997‐1003.
Cousineau,D.(2007).ComputingthePowerofatTest.
TutorialsinQuantitativeMethodsforPsychology,3,2,60‐62.
Descôteaux,J.(2007).StatisticalPower:AnHistorical
Introduction.TutorialsinQuantitativeMethodsfor
Psychology,3,2,28‐34.
Dunleavy,E.M.,Barr,C.D.,Glenn,D.M.,&Miller,K.M.
(2006).Effectsizereportinginappliedpsychology:How
arewedoing?.TheIndustrial‐OrganizationalPsychologist,
43,4,29‐37
Frías‐Navarro,M.D.Llobell,J.P&García‐Pérez.J.F(2000)
TamañodelEfectodelTratamientoySignificación
Estadística.Psicothema,12,236‐240.
Gigerenzer,G.(1993).TheSuperego,theEgo,andtheIdin
StatisticalReasoning.EnG.Keren&C.Lewis(Eds.),A
HandbookforDataAnalysisintheBehavioralSciences:
MethodologicalIssues(pp.311‐339).Hillsdale,NJ:LEA.
Glass,G.V.,McGaw,B.&Smith,M.L.(1981).Meta‐Analysis
inSocialResearch.ThousandOaks,CA:Sage.
Grissom,R.J.&Kim,J.J.(2005).EffectSizesforResearch.A
BroadPracticalApproach.Mahwah,NJ:LEA.
Hess,M.R.&Kromrey,J.D.(2004)RobustConfidence
IntervalsforEffectSizes:AComparativeStudyof
Cohen’sdandCliff’sDeltaUnderNon‐normalityand
HeterogeneousVariances.Paperpresentedattheannual
meetingoftheAmericanEducationalResearch
Association,SanDiego,April12–16,2004
Hunter,J.E.&Schmidt,F.L.(2004).MethodsofMeta‐Analysis.
CorrectingErrorandBiasinResearchFindings.Second
Edition.ThousandOaks,CA:Sage.
Krueger,J.(2001).NullHypothesisSignificanceTesting.On
theSurvivalofaFlawedMethod.AmericanPsychologist,
56,1,16‐26.
Ledesma,R.,Macbeth,G.&CortadadeKohan,N.(2008).
TamañodelEfecto:RevisiónTeóricayAplicacionescon
elSistemaEstadísticoViSta.RevistaLatinoamericanade
Psicología,40,3,425‐439.
McGraw,K.&Wong,S.(1992).ACommonLanguageEffect
SizeStatistic.PsychologicalBulletin,111,361‐365.
Molina‐Ibañez,J.G.,Ledesma,R.,Valero ‐Mora,P. &Yo u n g ,
F.W. (2005).AVideoTourthroughViSta6.4,aVisual
StatisticalSystembasedonLisp‐Stat.JournalofStatistical
Software,13,8,1‐10.
Moore,D.S.&McCabe,G.P.(1993).Introductiontothe
PracticeofStatistics.SecondEdition.NewYork:W.H.
Freeman&Company.
Randolph,J.&Edmondson,R.S.(2005).UsingtheBinomial
EffectSizeDisplay(BESD)toPresenttheMagnitudeof
EffectSizestotheEvaluationAudience.Practical
AssessmentResearch&Evaluation,10,14.Availableonline:
http://pareonline.net/getvn.asp?v=10&n=14
Sun,S.(2008)AComprehensiveReviewofEffectSize
ReportingandInterpretingPracticesinAcademic
JournalsinEducationandPsychology.Published
masterʹsthesis,UniversityofCincinnati.Availableon‐
line:http://www.ohiolink.edu/etd/
Thalheimer,W.,&Cook,S.(2002,August).HowtoCalculate
EffectSizesFromPublishedResearchArticles:ASimplified
Methodology.Availableonline:http://work‐
learning.com/effect_sizes.htm.
Thompson,B.(1994).TheConceptofStatisticalSignificance
Testing.PracticalAssessment,Research&Evaluation,4,5.
Availableonline:
http://PAREonline.net/getvn.asp?v=4&n=5.
Thompson,B.(1998).StatisticalSignificanceandEffectSize
Reporting:PortraitofaPossibleFuture.Researchinthe
Schools,5,2,33‐38.
Tierney,L.(1990).Lisp‐StatAnObject‐OrientedEnvironment
forStatisticalComputingandDynamicGraphics.NY:John
Wiley&Sons.
Valera‐Espín,A.&Sánchez‐Meca,J.(1997)Pruebasde
SignificaciónyMagnituddelEfecto:Reflexionesy
Propuestas.AnalesdePsicología,13,85‐90.
34
WilsonVanVoorhis,C.R.&Morgan,B.L.(2007).
UnderstandingPowerandRulesofThumbfor
DeterminingSampleSizes.TutorialsinQuantitative
MethodsforPsychology,3,2,43‐50.
Young,F.W.,Valero‐Mora,P.M.&Friendly,M.(2006).
VisualStatistic:SeeingDataWithDynamicInteractive
Graphics.Hoboken,NJ:JohnWiley&Sons.
Young,F.W.(1996).ViSta:TheVisualStatisticsSystem.UNC
L.L.ThurstonePsychometricLaboratory,Research
Memorandum94‐1.
ManuscriptreceivedOctober2nd,2008
ManuscriptacceptedMarch11th,2009.
Apendix:InstallingViStaandES‐calc
Followthestepsbelowtoinstalltheprogram:
Step1.DownloadandinstallViSta.Asmentionedearlier,ES‐calc
functionswhenintegratedintoViSta,andsoforittowork,ViStamust
firstbedownloadedandinstalled.ThelatestversionofViStais
availableatthefollowingURL:http://www.uv.es/visualstats/Book/.
Fromthiswebsite,onemaydownloadtheprogram’scompletecodeas
acompressedfolder.Simplydecompressthefolderandthenrunthe
applicationfileViSta.exetoopentheprogram.TheReadMeFirst.txt
fileprovidesabriefdescriptionofhowtoinstallViSta.
Step2.DownloadES‐calc(ES‐calc.lsp).Downloadtheprogramfile
ES‐calc(ES‐calc.lsp),availableatthefollowingURL:
http://www.mdp.edu.ar/psicologia/vista/.
Step3.LoadES‐calcintoViSta.Lastly,theusershouldopenViSta
andexecutethecommand“File/LoadLisp”fromthemainmenu(see
Figure1)toloadthefileES‐calc.lsp.ThiswillinstallES‐calcasaViSta
mainmenuoptionandaddtheESoptiontotheunivariateanalysis
command.