Review of Jones-Wilkins-Lee equation of state

The European Physical Journal Conferences 01/2011; 10. DOI: 10.1051/epjconf/20101000021
Source: DOAJ


The JWL EOS is widely used in different forms (two, three terms) according to the level of accuracy in the pressure-volume domain that applications need. The foundations of the relationship chosen to represent the reference curve, Chapman-Jouguet (CJ) isentrope, can be found assuming that the DP expansion isentrope issued from the CJ point is very nearly coincident with the Crussard curve in the pressure-material velocity plane. Its mathematical expression, using an appropriate relationship between shock velocity and material velocity leads to the exponential terms of the JWL EOS. It well validates the pressure-volume relationship chosen to represent the reference curves for DP. Nevertheless, the assumption of constant Gruneisen coefficient and heat capacity in the EOS thermal part remains the more restrictive assumption. A new derivation of JWL EOS is proposed, using a less restrictive assumption for the Gruneisen coefficient suggested by W.C. Davis to represent both large expansions and near-CJ states.

46 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.
    No preview · Article · Feb 2012 · Shock Waves
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present doctoral thesis deals with the study and the analysis of large strain and high strain rate behavior of materials and components. Theoretical, experimental and computational aspects are taken into consideration. Particular reference is made to the modeling of metallic materials, although other kinds of materials are considered as well. The work may be divided into three main parts. The first part of the work consists in a critical review of the constitutive modeling of materials subjected to large strains and high to very high strain rates. Specific attention is paid to the opportunity of adopting so-called strength models and equations of state. Damage and failure modeling is discussed as well. In this part, specific interest is addressed to reviewing the so-called Johnson-Cook strength model, by critically highlighting its positive and negative aspects. One of the main tackled issue consists in a reasoned assessment of the various procedures adoptable in order to calibrate the parameters of the model. This phase is enriched and clarified by applying different calibration strategies to a real case, i.e. the evaluation of the model parameters for a structural steel. The consequences determined by each calibration approach are then carefully evaluated and compared. The second part of the work aims at introducing a new strength model, that consists in a generalization of the Johnson-Cook model. The motivations for the introduction of this model are first exposed and discussed. The features of the new strength model are then described. Afterwards, the various procedures adoptable for the determination of the material parameters are presented. The new strength model is then applied to a real case, i.e. a structural steel as above, and the results are compared to those obtained from the original Johnson-Cook model. Comparing to that, the obtained outcomes show that the new model displays a better capacity in reproducing experimental data. Results are discussed and commented. The third and final part of the work deals with an application of the studied topics to a real industrial case of interest. A device called perforating gun is analyzed in its structural problematics and critical aspects. This challenging application involves the modeling of several typologies of material, large strains, very high strain rate phenomena, high temperatures, explosions, hypervelocity impacts, damage, fracture and phase changes. In this regard, computational applications of the studied theories are presented and their outcomes are assessed and discussed. Several finite element techniques are considered. In particular, tridimensional Eulerian simulations are presented. The obtained results appear to be very promising in terms of the possibilities of a fruitful use in the design process of the device, in particular in order to achieve an optimization of its key features.
    Full-text · Thesis · Apr 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Injury mechanisms due to high speed dynamic loads, such as blasts, are not well understood. These research fields are widely investigated in the literature, both at the experimental and numerical levels, and try to answer questions about the safety and efficiency of protection devices or biomechanical traumas. At a numerical level, the development of powerful mathematical models tends to study tolerance limits and injury mechanisms in order to avoid experimental tests which cannot be easily conducted. In a military framework, developing a fighter/soldier numerical model can help to the understanding of many traumas which are specific to soldier injuries, like mines, ballistic impacts or blast traumas. The aim of this study is to investigate the consequences of violent loads in terms of human body response, submitting a developed and validated three dimensional thorax Finite Element (FE) model to blast loadings. Specific formulations of FE methods are used to simulate this loading, and its consequence on the biomechanical model. Mechanical parameters such as pressure in the air field and also in internal organs are observed, and these values are compared to the experimental data in the literature. This study gives encouraging results and allows going further in soldier trauma investigations. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2014
Show more