ArticlePDF Available

Long-range contagion in automobile insurance data : estimation and implications for experience rating

Authors:

Abstract and Figures

Abstract The purpose of the paper is to use the date of claims in the prediction of risks. Dynamic random,e¤ects models on longitudinal count data are presented, and estimated on the portfolio of a major Spanish insurance company. The estimated autocorrelation coe¢cients of stationary random e¤ects are decreasing. A consequence is that the predictive ability of a claim,decreases with the lag between the date of risk prediction and the date of the claim. Empirical results are presented, which relate to the dynamic of bonus-malus coe¢cients and to the link between the duration of the histories and the information which they provide. Keywords
Content may be subject to copyright.
Long-rangecontagioninautomobileinsurance
data:estimationand implicationsforexperience
rating¤
JeanPinquet1,MontserratGuillén2,CatalinaBolan2
2000-43
November,2000
1UniversityParisX
2UniversityofBarcelona
¤Pinquetacknowledges…nancialsupportfromtheFédérationFrançaisedesSociétés
dAssurance.Guillénand Bolan thanktheSpanishCICYTgrantSEC99-0693.
1
2
Résumé
Lobjectifdu papierestdutiliserladatedes sinistresdanslaprédiction
desrisques.Desmodèlesàe¤etsaléatoires sontprésentés,etestimés sur
leportefeuilledunegrande compagniedassurancesespagnole.Lescoe¢-
cientsdautocorrélationestiméspourdese¤etsaléatoires stationnaires sont
décroissants surcesdonnées.Une conséquence estquelepouvoirprédictif
dun sinistredécroîtavec ledécalage entreladatedeprédictionetladate
desurvenance du sinistre.Desrésultatsempiriques sontprésentés,quise
rapportentàladynamiquedescoe¢cientsbonus-malusetàlamesurede
l’informationapportée parleshistoriquesenfonction deleurdurée.
Mots-clés
E¤etsaléatoiresconstantsetdynamiques.Fonction dautocorrélation
pourdese¤etsaléatoires stationnaires.
Abstract
Thepurposeofthepaperistousethedateofclaimsintheprediction
ofrisks.Dynamicrandome¤ectsmodelsonlongitudinalcountdata are
presented,and estimatedontheportfolio ofamajorSpanishinsurance
company.The estimatedautocorrelationcoe¢cientsofstationaryrandom
e¤ectsaredecreasing.Aconsequence isthat thepredictiveabilityofa
claimdecreaseswiththelag betweenthedateofriskpredictionand the
dateofthe claim.Empiricalresultsarepresented,whichrelatetothe
dynamicofbonus-maluscoe¢cientsand tothelinkbetweentheduration
ofthehistoriesand theinformationwhichtheyprovide.
Keywords
Time-independentand dynamicrandome¤ects.Autocorrelationfunc-
tionforstationaryrandome¤ects.
3
4
1Introduction
Thepurposeofthepaperistousethedateofclaimsintheprediction
ofrisks.Thisissuehasalreadybeenaddressed byactuarial literature.
Solutionsareobtainedfromcredibilitymodelswhichcan beupdated(Ger-
ber,Jones(1975)),and fromcredibilityestimatorswithgeometricweights
(Sundt (1988)).
Theratingmodelspresentedinthispaperareobtainedafterstatistical
inference onlongitudinalcountdata.Letusclarifyrst themotivations
whichled ustoquestiontheassumptionoftime-independence fortheran-
dome¤ects.
Hiddenfeaturesofriskdistributionsvarywithtime,asdoratingfactors.
Therandome¤ectsaddedinanaprioriratingmodelonlongitudinaldata
shouldthen bedynamic.Variationsofratingfactorsbetweentwodates
shouldincreasewiththerelatedlag,and thesameresultisexpectedfor
hiddenfeaturesinriskdistributions.Hence thepredictiveabilityofaclaim
shoulddecreasewiththelag betweenthedateofriskpredictionandthedate
ofthe claim.Besides,economicanalysis suggeststhatoptimal insurance
contractswithmoralhazardshould penalize recentclaimsmorethanolder
ones(Henriet,Rochet (1986)).Astationaryprocess fortherandome¤ects
will relatethepredictivepowerofclaimstotheaforementionedlag.Ifthe
precedingintuitionisveried,the estimatedautocorrelationfunctionofthe
randome¤ects should bedecreasing,apointalreadymentioned bySundt
(1988).
In Section2,wepresentdi¤erentPoissonmodelswithrandome¤ects.
Thevariance ofatime-independentrandome¤ectcan be estimated
fromdisaggregated data orfromnumbersofclaimsand frequencypremiums
whicharesummedacross theperiods.Ifthe estimatedvariance obtained
fromdisaggregated dataisgreaterthanthesecond one,the estimationof
distributionsfordynamicrandome¤ectscan bethoughtof.Thiscondition
isveriedonourdataset,whichisdrawnfromtheportfolio ofamajor
Spanishinsurance company.
An unconstrainedautocorrelationfunctionforthedynamicrandomef-
fectsisthenestimatedfromaPoissonmodelwithregressioncomponents.
Foreachlag,the corresponding autocorrelationisestimatedfrompaired
o¤productsoflagged number-residualsand frequency-premiums.Inthe
empiricalstudy,wedo…nd adecreasing autocorrelationfunction,witha
decreasingshapewhichis slowerthana geometricone.
5
OptimalBMS designedfromalinearcredibilityapproacharepresented
in Section3fromtherandome¤ectsmodelsdevelopedin Section2.
In Section4,weassess the consequencesofavarying autocorrelation
specicationfortherandome¤ectsonthedynamicofbonus-maluscoe¢-
cients.Anoptimalbonus-malus system(later referredto asBMS)designed
fromamodelwith dynamicrandome¤ectsand adecreasing autocorrelation
functionwill behaveinthefollowingway.Forapolicyholderwithafault-
less history,theno-claimdiscountsinduced byaclaimless yeararesmaller
afterafewyearsthanthoseobtainedfromtheusualcredibilitymodel, but
theyaremoreimportantifclaimswerereportedrecently.The explanation
isthesamein bothcases.The credibilitygrantedto a given periodofthe
pastdecreasesrapidlyastimegoesby,duetotheincreaseofriskexposure
butmostlytothediminutionoftheautocorrelationcoe¢cients.
Increasesofpremiumsinduced byclaimsfromthedi¤erentBMSare
notverydi¤erentinthe empiricalstudy.Asaconsequence,the claimless
policyholdersaresubsidized bytheotherpolicyholdersafterafewyearsif
theusualoptimalBMSisapplied,whereastheactualautocorrelationfunc-
tion decreaseswiththelag. Onthewhole,anoptimalBMS derivedfroma
Poissonmodelwithavarying autocorrelationfunctionseemsacceptableto
policyholders, ifthe estimatedcorrelogramisdecreasing.Besides, itwould
entail strongincentivestocarefuldrivingforthedriverswhoreporteda
claimrecently.
Anotherdi¤erence isthatanoptimalBMS designedfromthistypeof
specicationreachesitslimitfasterthantheotherones.Numericalre-
sultsonthisissueareofinterestforpublicauthoritiesfacingatrend of
ratingderegulation.IfcompulsoryBMSweredestinedtodisappearinthe
future,manypeoplesuggest thatasummaryofeach policyholdersclaim
historyshould beavailabletoeverycompetitorofthepolicyholdersinsur-
ance company.Insurance companiesarenotforced bycompetitiontouse
privateinformationontheirpolicyholdersintheir ratingstructure.For
instance,apolicyholderwithalongclaimless historycould beovercharged
ifhe could notprovehisgood behaviourtothe competitorsofhisinsur-
ance company.Public claimhistories,ascompulsoryBMS,can prevent the
creationofinformationrentsbyinsurance companies(see Kunreutherand
Pauly(1985)forananalysisina generalsetting).In Spainforinstance,
theAssociationofInsurersiscurrentlydesigningasystemforpoolingdata
onall automobileinsurance policies.FromJanuary2002,all insurerswill
haveaccess toinformationonanypolicyholder regardingthevehicle,type
ofcoverageand claimsforthepreviousveyears, includingtheoccurrence
date,typeofdamageand totalpaidamount.At thesametime, itwill
6
be compulsoryforall insurerstoprovidetheinformationontheirportfo-
lio.As shownin Section4,aveyearhistoryrevealsmoreinformation
attainablebyexperience thanwhatcould be expectedfromamodelwith
time-independentrandome¤ects.
Finally,theapplicabilityoftheresultsobtainedinthepaperisbriey
discussedin Section5.Apossiblyusefulresultforpractitionersisthe
following.AnoptimalBMSwithconstantrandome¤ectswill probably
overestimatethepredictiveabilityofclaimsifitisestimatedfromshort
historiesand appliedto a longerduration.Thisresultoccursiftheauto-
correlationfunctionoftherandome¤ectsactuallydecreaseswiththelag.
2Moment-basedestimatorsforlongitudinalcount
data
2.1Time-independentrandome¤ects
Thexede¤ectsmodelonlongitudinalcountdataiscomposedofPoisson
distributions,and isdenotedas
Ni;t»P(¸i;tui)i=1;:::;p;t=1;:::;Ti;max
iTi=Tmax;
whereni;tisthenumberofclaimsreportedforthepolicyholderiin period
t.The coe¢cient¸i;tdependsonregressioncomponents(represented bya
line-vectorxi;t)and ontheduration denotedasdi;t.Wewrite
¸i;t=di;texp(xi;ta);a2Rk;
whereaisacolumn-vectorofparametersand wherekisthenumberof
regressioncomponents.
Thexede¤ectuirepresentstheresidualheterogeneityinthenumber
ofclaimsdistribution.Theprecedingdistributionsholdfor real individuals,
and thevariablesNi;taresupposedtobeindependentinthexede¤ects
model. Thisistheusualassumptioninactuarialmodels(observedconta-
giononrisk variablesisonlyapparent).Therandome¤ects(Ui)i=1;:::;pare
assumedi.i.d., and thetworstmomentsare
E(Ui)=1;V(Ui)=¾2
U:
Intherandome¤ectsmodel, wehavethen
E(Ni;t)=¸i;t;V(Ni;t)=¸i;t+¸2
i;t¾2
U;E(Ni)=¸i;V(Ni)=¸i+¸2
i¾2
U;
7
withNi=PtNi;tand ¸i=Pt¸i;t.Distributionsinthemodelwith
randome¤ectsaremixturesofPoisson distributions,and theyreferto
genericindividuals,whorepresentclassesofreal individualswiththesame
observable characteristics.
Twoconsistentestimatorsof¾2
Ucan bethoughtof,whichare
c
¾2
U1=
P
i;t
h(ni;t¡b
¸i;t)2¡ni;ti
P
i;tb
¸2
i;t;c
¾2
U2=Pi(ni¡b
¸i)2¡ni
Pib
¸i2;(1)
whereb
¸i;tand b
¸iarethefrequency-premiumscomputedfromlikelihood
maximizationinthePoissonmodelwithoutxedor randome¤ects.The
second estimatorshould bepreferred becauseitsvariance islower.The
intuitionisthat thisestimatorusesmoreinformation. Onourdataset,
thesecond estimatorisinferiortotherstone(see Section4).Asigni-
cantdi¤erence betweentwoconsistentestimatorsmeansthat themodel is
misspecied(see Hausman(1978)foratest).As showninthefollowing
section,theinequality
0<c
¾2
U2<c
¾2
U1
isanecessaryconditionforthe estimationofsomedynamicrandome¤ects
specications.
2.2Poissonmodelswith dynamicrandome¤ects
Thexede¤ectsmodel isdenotedas
Ni;t»P(¸i;tui;t):
Asmentionedintheintroduction,thisformulationisnatural. Thexed
e¤ectsreecthiddenfeaturesinriskdistributionswhichmay varywith
time,asdoratingfactors.Two assumptionsareretainedontherandom
e¤ects,whicharethefollowing.
²Thedistributionofvec
1·t·Ti(Ui;t)dependsonlyonTi.
²Ifthedistributionofvec
1·t·Ti(Ui;t)isthatofvec
1·t·Ti(Ut);thedistribution
ofvec
1·t·Tmax(Ut)is supposedtobestationary.Thisinvariance property
withrespect totimetranslationsimpliesthat thepredictiveabilityof
aneventwill depend onthelag betweenthedateofriskprediction
and thedateofthe event.Wesupposethat thesquaredrandom
e¤ectsareintegrable.
8
Withan unconstrainedautocorrelationfunctionforstationaryrandom
e¤ects,wehave
Cov(Ut;Ut¡h)=½U(h)¾2
U;0·h<t·Tmax;
with¡1·½U(h)·1;½U(0)=1:
Letus specifydistributionswhichmatchthese constraints.Remem-
berthat therandome¤ectsUtarenon-negative,and thatweassume
E(Ut)=18t=1;:::;Tmax.Ifweretainlog-normaldistributionsfor
the(Ut)1·t·Tmax;we canwrite
Ut=exp(Wt)
E[exp(Wt)];Wt»N(0;¾2
W))log(Ut)»N(¡¾2
W
2;¾2
W);
V(Ut)=¾2
U=exp(¾2
W)¡1)¾2
W= log(1+¾2
U):
Supposenowthat(Wt)1·t·Tmaxfollowsamultivariate,stationaryand non
degenerateGaussian distribution.Wehave
Cov(Wt;Wt¡h)=¾2
W½W(h))Cov(Ut;Ut¡h)=¾2
U½U(h)=exp¡¾2
W½W(h)¢¡1
)½W(h)=log(1+¾2
U½U(h))
log(1+¾2
U);½U(h)=(1+¾2
U)½W(h)¡1
¾2
U:(2)
Thematrix³½W(jh0¡hj)´
1·h;h0·Tmaxispositivede…nite,since itisthe
correlationmatrixof(Wt)1·t·Tmax.Forinstance,
1>½W(h)>¡1(h>0))1>½U(h)>exp(¡¾2
W)¡1
exp(¾2
W)¡1=¡exp(¡¾2
W)=¡1
1+¾2
U:
Negativevalueswhichare close enoughto-1cannotbeobtainedascorre-
lationsofthemultiplicativerandome¤ectswithlog-normaldistributions.
Besides,thesetofattainablevaluesdecreaseswiththevariance (see Em-
brechtsetal. (1999)fordevelopmentsonthis subject).
Fromthemomentequationsderivedintherandome¤ectsmodel
E
2
4X
i;t(Ni;t¡¸i;t)txi;t
3
5=0³02Rk´;
9
E
2
4X
i;t(Ni;t¡¸i;t)2¡Ni;t¡¸2
i;t¾2
U
3
5=0;
E
2
4X
i=Ti>h
X
Ti¸t>h(Ni;t¡¸i;t)(Ni;t¡h¡¸i;t¡h)¡¸i;t¸i;t¡h¾2
U½U(h)
3
5=0;
(0<h<Tmax)(3)
weobtainconsistentmoment-basedestimatorsfora;¾2
Uand (½U(h))0<h<Tmax:
The empiricalcounterpartofthemomentequationrelatedtoaleadsto
X
i;t
³ni;t¡b
¸i;t´txi;t=0;b
¸i;t=di;texp(xi;tba):(4)
Hence,themaximumlikelihoodestimatorofainthePoissonmodel
withoutxedor randome¤ects(i.e.theaprioriratingmodel)isacon-
sistentestimatorofainthemodelwithrandome¤ects.Fromthesecond
momentequation,aconsistentestimatorof¾2
Uisc
¾2
U1(see (1)).Finally,
the estimatedcorrelogramofUisobtainedfrom
c
¾2
U1b½U(h)=
P
i=Ti>h
P
Ti¸t>h(Ni;t¡b
¸i;t)(Ni;t¡h¡b
¸i;t¡h)
P
i=Ti>h
P
Ti¸t>hb
¸i;tb
¸i;t¡h=Numh
Denh;(5)
for0<h<Tmax.All these estimatorsare consistentand asymptotically
normal. TheyaregiveninZeger(1988),alongwithmodiedestimatorsfor
theregressionwhich useweightsrelatedto overdispersionand autocorrela-
tioninordertoreduce theasymptoticvariance.
Thesemoment-basedestimatorscan beusedwithlog-normaldistribu-
tionsifand onlyiftheyfulll thetwofollowingconditions:
a)c
¾2
U1>0;b)³b½W(jh0¡hj)´
1·h;h0·Tmaxpositivede…nite,withb½W(0)=1
and
b½W(h)=log(1+c
¾2
U1b½U(h))
log(1+c
¾2
U1)=log(1+(Numh=Denh))
log(1+c
¾2
U1)
for0<h<Tmax.These conditionsareveriedonourdata.
We concludethesectionwithanswerstothequestion:Whatcan be
doneifconditionb)isnotveried?Theprecedingspecicationmustbe
10
abandoned,atleastwiththelog-normaldistributionsforthe(Ut)1·t·Tmax.
However,restrictedspecicationsoftheautocorrelationfunctioncan be
estimated underweakerconditions.
Letusinvestigateforinstance thespecicationwithconstantautocor-
relationcoe¢cients(exceptforthetrivialone):½U(h)=½8h¸1;½2
[¡1;1]:AcorrelationmatrixofdimensionTwithconstantcorrelationcoef-
cientsispositivede…niteifand onlyif1>½>¡1=(T¡1),so only values
of½belongingto[0;1[can beretainedforany valueofT.Ifwesumthe
equations(3)forh=1;::: ;Tmax;weobtain
c
¾2
U1b½=P0<h<TmaxNumh
P0<h<TmaxDenh=
P
i=Ti¸2
P
t6=t0(ni;t¡b
¸i;t)(ni;t0¡b
¸i;t0)
P
i=Ti¸2
P
t6=t0b
¸i;tb
¸i;t0
)b½=P0<h<TmaxDenhb½U(h)
P0<h<TmaxDenh;
withthenotationsofequation(5).Thismodelwithconstantcorrelation
coe¢cientscan be estimatedonthedataif
0·b½<1,0·
P
i=Ti¸2
P
t6=t0(ni;t¡b
¸i;t)(ni;t0¡b
¸i;t0)
P
i=Ti¸2
P
t6=t0b
¸i;tb
¸i;t0<c
¾2
U1)0<c
¾2
U2<c
¾2
U1;
(6)
withthenotationsofequation(1).
Asimplespecication(inaparametricsetting)ofadecreasing auto-
correlationfunctionistheGaussianautoregressiveprocess oforderone(an
AR(1)) forthe(Wt)1·t·Tmax, i.e.
½W(h)=½h,¾2
U½U(h)=(1+¾2
U)½h¡1:(7)
Theparameter½can be estimatedfromonemomentequationobtained by
summingthe equationsrelatedtothelagsin(3).Weobtainthe equation
in½X
0<h<Tmax
Numh¡(((1+c
¾2
U1)½h¡1)Denh)=0:(8)
The equationadmitsauniquesolutionb½,0<b½<1ifthe conditions
obtainedin(6)arefullled.Indeed,theleftmemberofthepreceding
equationisthenadecreasingfunctionof½;positiveif½=0,negativeif
½=1.
11
2.3 ExtensionofthecorrelogramfromtheYule-Walkerequa-
tions
Theinsurance contractsoftheportfolioinvestigatedinthe empiricalsection
areobservedforamaximumnumberofperiodsequaltoTmax=7.Hence,
sixautocorrelationcoe¢cientscan be estimatedfromthedata.However,
autocorrelationcoe¢cientsforhighervaluesofthelag areofinterest,for
instance ifthelong-termpropertiesofthederivedBMSareinvestigated.
Extensionsofthe correlogramcan beinferredfromtherestrictedspeci-
cationsinvestigatedin Section2.2,not tomentionthebasicmodelwith
time-independentrandome¤ects.Inthis sectionwepresentanextension
oftheunconstrainedcorrelograminaparametricsetting(withlog-normal
distributionsforthe(Ut)1·t·Tmax),which usesbasicresultsforstationary
timeseries.
LetusconsidertheGaussian process (Wt)1·t·Tmaxdenedin Section
2.2.Therateofinnovationfora given periodistheproportionofthe
variance whichisnotexplained bythepast.FortheperiodT+1(1·T·
Tmax), itisexpressedas
1¡V[E(WT+1jW1;:::;WT)]
V(WT+1)=1¡t½1;TR¡1
1;T½1;T;(9)
where½1;T=vec1·t·T(½W(t)) and R1;T=(½W(jt¡t0j))1·t;t0·T.The
conditionalexpectationshould bereplaced byana¢neregressionfora
generalstationaryprocess,but therandome¤ectsprocess (Wt)1·t·Tmaxis
assumedtobe centeredand Gaussian.The equation(9)isderivedfrom
thea¢neregressioninL2ofWT+1withrespect to(WT+1¡t)t=1;:::;T.We
obtainforinstance
E(WT+1jW1;:::;WT)=T
X
t=1'tWT+1¡t;'=vec1·t·T('t)=R¡1
1;T½1;T:
(10)
Fromthestationarityoftheprocess, itiseasilyseenthat therateofinnova-
tionisadecreasingfunctionoftheperiodindex. Onourdata, itsestimation
isalmostconstantforthelastperiods,whichmeansthat therstvaluesof
therandome¤ectsprovidelittleinformationascomparedtothelastones.
Anaturalwaytoextend therandome¤ectsprocess (Wt)1·t·Tmaxistouse
aconstantrateofinnovationforthefollowingperiods.The corresponding
extensionisanautoregressiveGaussian process oforderTmax¡1, i.e.
E(WT+1jW1;:::;WT)=E(WT+1jWT¡Tmax+2;::: ; WT)8T¸Tmax;
12
whichmeansthat thepastis summarized bythelastTmax¡1valuesofthe
process.Thedynamic equationontherandome¤ectsisthen
WT+1=Tmax¡1
X
t=1'tWT+1¡t+"T+1;(11)
withCov("T+1;WT+1¡t)=08T¸Tmax;8t;1·t·T:
Thesequence ("T+1)T¸TmaxisawhitenoiseGaussian process,witha
variance denotedas¾2
".The constantrateofinnovationisequalto¾2
"=¾2
W.
The extensionofthe correlogramisthen derivedfromtheYule-Walker
equations.Theparameters('h)1·h·Tmax¡1areobtainedfromthe corre-
lationcoe¢cients(½W(h))1·h·Tmax¡1(whichcan be estimatedfromthe
data)byequation(10),withT=Tmax¡1.Letusapplythe covariance
operatorsCov(WT+1¡h;²)T¸h¸Tmaxtobothmembersofequation(11).We
obtainalinear recurrence equationonthe correlationcoe¢cientsofthe
autoregressiveprocess, i.e.
½W(h)=Tmax¡1
X
t=1't½W(h¡t) (8h¸Tmax):(12)
Letus supposethat the characteristicpolynomialoftheshiftoperatorin
thespace ofthesolutionsof(12), i.e.
½Tmax¡1¡Tmax¡1
X
t=1't½Tmax¡1¡t=T1
Y
t=1(½¡½t)
Tmax+T1¡1
2
Y
t=T1+1(½¡½teiµt)(½¡½te¡iµt)
has simplerootsinC.The coe¢cients½tarereal-valued,and thesecond
productexistsonlyifsomerootsdonotbelongtoR.Wethen have
½W(h)=T1
X
t=1at½h
t+
Tmax+T1¡1
2
X
t=T1+1(btcos(hµt)+ctsin(hµt))½h
t(8h¸0):
Thereal-valuedcoe¢cientsat;bt;ctareobtainedfromthe estimations(b½W(h))1;:::;Tmax¡1.
Theautocorrelationcoe¢cientsconvergetowardszeroifthe coe¢cients½t
belongto]¡1;+1[.Thenthe coe¢cientsb½U(h)followfromequation(2).
3Linearcredibilitypredictorsderivedfromthe
precedingmodels
Let(nt)1·t·T·Tmaxbethehistoryofclaimsrecordedonaninsurance con-
tract (wesuppress theindividual indexinordertosimplifythenotations).
13
Alinearcredibilitypredictor(Bühlmann (1967)) forperiodT+1isob-
tainedfromaregression derivedinthemodelwithrandome¤ects.The
predictorisequaltoba+PT
t=1b
btnt;with
(ba;b
b1;::: ;c
bT)=argmin
a;(bt)t=1;:::;T
b
E
2
4ÃUT+1¡a¡T
X
t=1btNt
!23
5;
wherethe expectationisestimatedintherandome¤ectsmodel. Since
E(UT+1)=1;wehaveba+PT
t=1b
btb
E(Nt)=1:Since b
¸t,thefrequency
premiumderivedfromlikelihoodmaximizationintheaprioriratingmodel,
convergestowardsthefrequencyriskE(Nt)computedinthemodelwith
randome¤ects(see equation(4)),wehave
ba+T
X
t=1
b
btnt=1+T
X
t=1
b
bt(nt¡b
¸t);with
(b
bt)t=1;:::;T=argmin
(bt)t=1;:::;T
b
V
2
4ÃUT+1¡T
X
t=1btNt
!23
5=hb
V(N)i¡1d
Cov(N;UT+1):
WewriteN=vec
1·t·T(Nt):Fromthe consistentestimatorsgivenin Section
2.2,the estimatorsoftheindividualmomentsofinterestare
b
V(Nt)=b
¸t+c
¾2
U1b
¸t2;d
Cov(Nt;Nt0)=b
¸tc
¸t0c
¾2
U1b½U(jt¡t0j) (t6=t0);
d
Cov(Nt;UT+1)=b
¸tc
¾2
U1b½U(T+1¡t):
Thebonus-maluscoe¢cientcan bewrittenas
Ã1¡T
X
t=1credt
!+T
X
t=1credtnt
b
¸t;
where³credt=b
btb
¸t´
t=1;:::;Tarethe credibilitycoe¢cients,whicharethe
solutionsofthelinearsystemwitht=1;:::;Tequations
µ1+b
¸tc
¾2
U1credt+X
t06=t
c
¸t0c
¾2
U1b½U(jt¡t0j)credt0=b
¸tc
¾2
U1b½U(T+1¡t):
(13)
14
Thislinearcredibilitysystemcan beusedwiththeunconstrainedcorrel-
ogramestimatedin Section2.2,orfromtherestrictedspecicationsesti-
matedafterwards.Forexample,fromtheassumptions½U(h)=½8h>0;
b
¸t=b
¸8t=1;:::;T,weobtain
credt=b
¸b½c
¾2
U1
1+b
¸c
¾2
U1(1¡b½)+b
¸b½c
¾2
U1T8t=1;:::;T:(14)
The credibilitycoe¢cientsderivedfromthePoissonmodelwithaconstant
autocorrelationfunctionincreasewithb½,c
¾2
U1and b
¸(all otherthingsbeing
equal).Thetotalcredibilityconvergestowards1ifTgoestoin…nity.
Propertiesofthe credibilitycoe¢cientsderivedfromequation(13)are
notsimpleto obtainina generalsetting.Ifthefrequencypremiumsare
negligiblewithrespect to one,weinferfromthisequation
credt»b
¸tc
¾2
U1b½U(T+1¡t):
Asequence ofcredibilitycoe¢cients should havethesameshapeasthatof
acorrelogramwiththesamelengthand areversedindex.
Totalcredibilitydoesnotconvergeto onewhenTgoestoin…nityif
theautocorrelationfunction decreasesrapidly,and thelimitcan bevery
inferiorto one.LetusconsiderforexampleaGaussianAR(1)process
fortheadditiverandome¤ectsWt= log(Ut):Withthe empiricalresults
obtainedinthenextsection(i.e.c
¾2
U1=1:269;b½W(h)=0:79h) thetotal
credibilityforanaveragerisk(b
¸t=0:09 8t)convergestowards0:214 when
Tconvergestowardsin…nity.Thislimitisobtainedinround guresafter
twenty years.Itcorrespondstothemaximumbonusappliedtotheapriori
frequencypremiumofapolicyholderwithaclaimless history.
Simpleupdatingformulasdonotseemtobeavailableforthe credibility
coe¢cients.Gerberand Jones(1975)provethatlinearupdatingformu-
lasexistunderconditionswhich di¤erfromthestationarityassumption
retainedinthispaperfortherandome¤ects.
Predictionthroughanexpectedvalueprinciple(Lemaire(1985),Dionne,
Vanasse(1989),Pinquet (1997)) could beobtainedfromamultivariatelog-
normalspecicationfortherandome¤ects(Ut)t=1;:::;Tmax.Priorand pos-
teriorexpectationsdonothaveaclosedform,butcan beapproximated by
numerical integrationorbysimulation(see Pinquet,(1997)foranexample
withtworandome¤ects).Wedid notretainthisapproachinthe empirical
study,since wewould needtocomputeintegralsofhigh dimensionwhich
aredi¢cult to approximate.Besides,thereisnostatisticoflowdimension
15
whichsummarizesthehistoryinthe expressionofthebonus-maluscoef-
cients,suchasthesumofclaimsand the cumulatedfrequencypremium
inthemodelwithconstantrandome¤ects.ThedescriptionoftheBMS
wouldthen bedi¢cultsince the coe¢cientsdonothaveaclosedform.
4Empiricalresults
4.1Thedataset
Theworkingsamplerepresentsten percentoftheportfolio ofamajor
Spanishinsurance company.Weselectedonlypoliciescoveringcarsfor
privateuse.Thedurationofindividualhistoriesrangefromonetoseven
years,hence Tmax=7withthenotationsofthepaper.Policyholderswere
observed between1991 and 1997,and indicatorsofthe calendaryearsare
partoftheregressioncomponentsinorderto allowforatrend inthepast
(see Besson,Partrat (1992)foroptimalBMSwithatrend).As shown
inTable1,which presentstheregressionresults,thefrequencyofclaims
decreasesfrom1991 to 1995 and increasesafterwards.
Inordertohavesimilar ratesofarrivaland attritionintheworking
sampleand intheportfolio,weselectedthepolicyholdersinthefollowing
way.Ten percentofthepolicyholderspresentin1991 wereselectedat
random,and keptintheworkingsampleaslong aspossible.Ten per
centofthenewcomersin1992 wereincludedintheworkingsample,and
so on.Thesize oftheworkingsampleincreasesfrom120,000 in1991 to
200,000 in1997 (inround gures).Theattritionratevariesbetween8.5%
and 10%.Theworkingsampleisan unbalanced paneldatasetwhichis
composedof269,388 policyholdersand of1,172,701 periods.All theperiod
durationsare equalto oneyear,whichmeansthat the characteristicsofthe
policyholdersareknownonlyateachanniversarydate.Thisinaccuracyin
theobservationoftheregressioncomponentsisofnoconsequence inour
opinion.
4.2Resultsoftheregression
Table1presentstheresultsofaPoissonmodelwhichexplainsthenumber
ofclaimsatfaultbyregressioncomponentswhichareall indicatorsoflevels
ofdi¤erentratingfactors.Theaveragefrequencyofclaimsperyearisequal
to 0.09.
The estimatedexponentialofthe coe¢cients(writteninamultiplicative
way)relatedtothedi¤erentlevelsofeachratingfactorareaveragedto
16
one(columnST.COFF.,forstandardizedcoe¢cient).Two advantagesare
obtained.
²The coe¢cientsdonotdepend onthelevelthatmustbeomitted
intheregressionforeachratingfactorinorderto avoidcolinearity.
Thisisduetothefact that thevectorof frequency-premiumsderived
fromaPoissonmodelwithregressioncomponentsdependsonlyon
thelinearspace spanned bythe covariates.
²These coe¢cientscan be comparedtotherelativefrequencyofeach
level, whichisthefrequencyofclaimsforoneleveldivided bythe
globalfrequency,columnREL.FRE.inTable1.Considerforinstance
the category30 yearsorless oftheratingfactor“ageofthepoli-
cyholder.Therelativefrequencyis1.236,whereasthestandardized
coe¢cientderivedfromthePoissonmodelequals1.058.Fromthe
likelihoodequationsofthePoissonmodel(see (4)),thenumberof
claimsequalsthesumofthefrequencypremiumsforeachlevel. The
ratio 1.236/1.058=1.168 meansthat theyoungpolicyholdershave,
withrespect to other ratingfactors,afrequencyrisklevelwhichis
16.8%higherthantheaverage.
TABLE1
RATINGSCOREFORTHEFREQUENCYOFCLAIMSATFAULT
VARIABLE:YEAR
WEIGHT(%)REL.FRE.ST.COFF.
1991 10.0 1.082 1.071
1992 11.8 1.008 0.983
1993 13.8 0.966 0.939
1994 15.2 0.961 0.938
1995 16.1 0.982 0.978
1996 16.5 1.001 1.023
1997 16.6 1.022 1.072
17
VARIABLE:GENDER
WEIGHT(%)REL.FRE.ST.COFF.
woman17.6 1.061 0.998
man82.4 0.987 1.001
VARIABLE:GEOGRAPHICALAREA
WEIGHT(%)REL.FRE.ST.COFF.
northern provinces18.3 1.162 1.175
intermediateprovinces27.6 0.990 0.953
southern provinces54.1 0.950 0.964
VARIABLE:AGEOFTHEDRIVINGLICENCE
WEIGHT(%)REL.FRE.ST.COFF.
3yearsorless 5.0 1.558 1.385
between4 and 14 years40.0 1.080 1.023
15 yearsormore55.0 0.891 0.948
VARIABLE:SENIORITYOFTHE POLICYHOLDER
WEIGHT(%)REL.FRE.ST.COFF.
2yearsorless 38.0 1.240 1.216
between3 and 5years27.0 0.954 0.952
morethan5years35.0 0.774 0.802
VARIABLE:AGEOFTHE POLICYHOLDER
WEIGHT(%)REL.FRE.ST.COFF.
30 yearsorless 22.5 1.236 1.058
morethan30 years77.5 0.931 0.983
VARIABLE:COVERAGELEVEL
WEIGHT(%)REL.FRE.ST.COFF.
comprehensive,exceptre16.2 1.102 1.089
comprehensive33.0 1.032 0.991
third partyliabilityonly50.8 0.946 0.977
VARIABLE:POWEROFTHEVEHICLE
WEIGHT(%)REL.FRE.ST.COFF.
less than55 hp 22 0.910 0.924
55 hp ormore78 1.025 1.021
18
Spainis splitintothree geographicalareasbytheinsurance company.
Areanumber1iscomprisedofthenorthernregions(Galicia,Cantabria,
Asturias,PaisVasco),areanumber3includesthesouthern provincesand
areanumber2referstotheintermediateprovinces.Theinsurance company
thinksthan northern provincesaremorerisky thantheotheronesbecause
itismorerainythere.Forthesamereasons,zonenumber2ismorerisky
thanzonenumber3.Thisisafull Bayesianapproachofinsurance rating,
and thispriorknowledgeonthedatashould berelatedtoafamousresult
ofSpanishclimatology,namelytheAudreyHepburnstheorem
Therainin Spainstaysmainlyintheplain,
atheoremwhichcaneven besung(see Cukor(1964)foraproof).
4.3 Estimatorsforthecorrelogramoftherandome¤ects
Thetwoconsistentestimatorsquotedin Section2.1forthevariance ofa
time-independentrandome¤ectarerespectively
c
¾2
U1=Pi;t(ni;t¡b
¸i;t)2¡ni;t
Pi;tb
¸2
i;t=118554:78 ¡105655
10167:12 =1:269:
c
¾2
U2=Pi(ni¡b
¸i)2¡ni
Pib
¸i2=144879:33 ¡105655
50359:14 =0:779:(15)
Wehave0<c
¾2
U2<c
¾2
U1;anecessaryconditionforthe estimationofdy-
namicrandome¤ects.
Letusestimaterstaconstantautocorrelationfunction.Withthe
notationsofSection2.2,wehave
b½c
¾2
U1=PiPt6=t0(ni;t¡b
¸i;t)(ni;t0¡b
¸i;t0)
PiPt6=t0b
¸i;tb
¸i;t0=144879:33 ¡118554:78
50359:14 ¡10167:12 =0:655;
b½=0:655
1:269 =0:516:
19
Letusestimatetheunconstrainedcorrelogramof(Ut)1·t·6,and theAR(1)
specication.Fromthenumericalvalues
h1 2 3 4 5 6
Numh5846:17 3149:86 2015:71 1268:20 618:50 263:82
Denh7293:90 5121:48 3438:37 2291:66 1353:29 597:31 ;
(the coe¢cientsNumhand Denharede…nedin(5)),weobtainthefollow-
ingestimations.
TABLE2
AUTOCORRELATIONCOEFFICIENTS
UNCONSTRAINEDANDLOG-AR(1)RANDOMEFFECTS
h(lag)123456
b½U(h)0:632 0:485 0:462 0:436 0:360 0:348
b½0
U(h)0:718 0:527 0:393 0:297 0:227 0:174
Therstlineofthetablegivestheunconstrainedautocorrelationcoe¢-
cients.Thelastlineiscomposedofautocorrelationcoe¢cientsderived
fromanAR(1)specicationfortheGaussian process (Wt)1·t·Tmax,with
Ut=exp(Wt)=E[exp(Wt)](see Section2.2).Weobtainb½0
W(h)=b½h;with
b½=0:79 fromequation(8),and thenb½0
U(h)from(7).Theunconstrained
correlogramdecreases,butmoreslowlythanthelog¡AR(1)one.
Asaresultofthedecreasingshapeofthe correlogram,thepredictive
abilityofclaimswill decreasewiththeirage. Onereasonisthe exogeneous
interpretationoftheindividualhistoriesusuallyretained bytheactuarial
models(i.e.unobservedvariationsofriskdistributionsbetweentwodates
increasewiththerelatedlag). Otherpossible explanations stemfromen-
dogeneouse¤ects,whichexpress themodicationsofriskdistributionsfor
real individualsinduced byclaims. One canthinkofthemodicationsof
riskperception behind thewheelafteranaccident.Anegative e¤ectis
expectedonthefrequencyrisk,whichcould decreasewiththeageofthe
claim.Anothernegative endogeneouse¤ectisduetothe…nancial incen-
tivesinduced bytheBMS(see Lemaire,(1977)and Chiappori, Heckman,
and Pinquet,(2000)).Motorinsurance ratingiscompletelyderegulated
in Spain,and alackofpolicyholdersawareness ofthe experience rating
schemesprobablyreducestheincentive e¤ects.
Letusnowcomputethe extensionoftheunconstrainedcorrelogram
fromtheYule-Walkerequations(see Section2.3).Thefollowingtablegives
20
theautocorrelationfunctionoftheGaussian process (Wt)1·t·6;theparam-
etersoftheAR(6)equationand theinnovationfunction.
TABLE3
AUTOCORRELATIONCOEFFICIENTSBETWEENGAUSSIAN ADDITIVERANDOMEFFECTS
COEFFICIENTSOFTHEAR(6)EQUATION
INNOVATIONFUNCTIONFORTHENEXTPERIOD
h(lag)1 2 3 4 5 6
b½W(h)0:719 0:585 0:563 0:538 0:459 0:447
'h0:570 0:003 0:135 0:123 ¡0:085 0:036
Innov(h+1)0:484 0:474 0:453 0:448 0:447 0:443
Fromtheseresults,weobtaintheautocorrelationfunctionwhichextends
the estimatedvalues(b½W(h))h=1;:::;6fromaconstantrateofinnovation,
hence equalto0:443 forourdata(see Section2.3).The characteristic
polynomialrelatedtothelinearequationwhich denestheautocorrelation
coe¢cientsisequalto
½6¡6
X
t=1't½6¡t=2
Y
t=1(½¡½t)4
Y
t=3(½¡½teiµt)(½¡½te¡iµt);
with
½1=0:919;½2=¡0:671;½3=0:683;µ3=1:854;½4=0:579;µ4=0:918:
Theunitofmeasurefortheargumentsofthe complexrootsistheradian.
The extendedautocorrelationcoe¢cientsarethen
b½W(h)=2
X
t=1at½h
t+4
X
t=3(btcos(hµt)+ctsin(hµt))½h
t;
with
a1=0:737;a2=0:033;b3=0:114;c3=0:040;b4=0:116;c4=0:039:
(16)
Whenthelag hislarge,wehavethe equivalence b½W(h)»0:737£(0:919)h:
Thisautocorrelationfunction decreasestowards0atanexponentialrate
(itisdivided bytwoeveryeightyears),butslowerthanwhatweobtained
fromtheAR(1)process.
21
4.4 Experienceratingfromthedi¤erentmodels
Inthefollowingtables,credibilitycoe¢cientsforthedi¤erentperiodsare
computedforaninsurance contractwithafrequencypremiumperyear
equaltotheaveragefrequency,whichis0.09.WeusethePoissonmodels
withrandome¤ectspresentedintheprecedingsections.Thenext table
providescredibilitycoe¢cientscomputedfromthree specicationsforthe
randome¤ects.Ifrandome¤ectsaretime-independent (typeAinthe
table)orwithaconstantautocorrelationfunction(typeB),the credibil-
itiesarethesameforeach periodif frequencypremiumsdonotvary,as
showninequation(14).TypeCcorrespondstotherandome¤ectsmodel
with unconstrainedcorrelationcoe¢cients.The coe¢cientsare computed
forhistoriesrangingfromonetosix years.Weusedtheusualcredibility
formulafortime-independentrandome¤ects,and thelinearcredibilitysys-
temgivenin Section3forthetwo othermodels.Fortherandome¤ects
modeloftypeA,we estimatedthevariance fromthenumberofclaims
and frequency-premiums summedacross theperiods.Hence,weretained
c
¾2
U2=0:779 insteadofc
¾2
U1=1:269 (see equation(15)).
Rememberthatacredibilitycoe¢cientisabonusifnoclaimisreported.
22
TABLE4
CREDIBILITYCOEFFICIENTSFORAN AVERAGERISK(PERCENTAGE)
BMSOFTYPE A(TIME-INDEPENDENTRANDOMEFFECTS)
ANDOFTYPE B(DYNAMICRANDOMEFFECTSWITHCONSTANTAUTOCORRELATION)
DurationofhistoriesCredibilityperyear(%)Totalcredibility(%)
typeAtypeBtypeAtypeB
1year6.55 5.29 6.55 5.29
2years6.14 5.02 12.29 10.04
3years5.79 4.78 17.37 14.35
4years5.47 4.56 21.89 18.26
5years5.19 4.36 25.95 21.83
6years4.93 4.18 29.60 25.10
BMSOFTYPE C:DYNAMICRANDOMEFFECTS(UNCONSTRAINEDCORRELOGRAM)
DurationofhistoriesCredibilityperyear(%)Totalcredibility(%)
1year6.47 0 0 0 0 0 6.47
2years4.57 6.17 0 0 0 0 10.74
3years4.15 4.32 5.98 0 0 0 14.45
4years3.74 3.94 4.14 5.83 0 0 17.65
5years2.83 3.57 3.82 4.03 5.72 0 19.97
6years2.66 2.68 3.46 3.71 3.94 5.65 22.10
Fora given durationoftheindividualhistory,the credibilitycoe¢cients
ofthelast tabledecreasewiththelag betweentheprediction periodand
the currentperiod,asdotheautocorrelationcoe¢cients.Forexample,the
credibilitygiveninthelast tableforthelastyearofasix yearshistory
outweighsthe credibilityofthetworstyears.
Totalcredibilityislowerinthelast tableforhistoriesof fouryearsand
more.Hence thebonusappliedtoaclaimless policyholderbecomesless
importantafterafewyearsifadecreasing autocorrelationfunctionisused
fortherandome¤ects.
Letuscomparetotalcredibilityforlongdurations.Weneedtoextend
the correlogramforhighervaluesofthelag,whichisobviousfor random
e¤ectsoftypeAand B.Fortherandome¤ectsoftypeC,weretaintwopos-
sible extensions:C(1)setstheautocorrelationcoe¢cientsequaltothelast
23
estimation(i.e.b½U(h)=b½U(6)8h>6),whereasC(2)usestheYule-Walker
equations(see (16)and (2)).Iftherstextensioncertainlyoverestimates
theactualvalues,thesecond oneprobablyunderestimatesthem,since it
assumesaconstantinnovationintheadditiveprocess.Adecreasingweight
isgiventothepastwhenswitchingfromtypeAtotypeC(2).
TABLE5
LONG-TERMBEHAVIOUROFTOTALCREDIBILITY(PERCENTAGE)
DurationofhistoriestypeAtypeBtypeC(1) typeC(2)
10 years41.2 35.8 29.7 27.7
20 years58.4 52.8 43.5 32.6
40 years73.7 69.1 59.4 34.1
Theresultobtainedinthelastcolumnis striking.Afteralmostafull
lifeofdriving,apolicyholderwithaclaimless historyobtainsafrequency-
bonusofonly34 percent,whichisaboutvetimesthebonusafterthe
rstyear.Notsurprisingly,thelong-termpropertiesoftheBMS depend
stronglyonthe extensionofthe correlogram.
Letusnowperformanimpulse-responseanalysisofthe evolutionofthe
bonus-maluscoe¢cientifone claimisreported duringtherstyear,and
noneduringtheyearsthatfollow.We compareBMSoftypeA,Band C
oversix years,foracarwiththeaveragefrequencypremium.Bonus-malus
coe¢cientsaregivenin percentage.
TABLE6
IMPULSE-RESPONSEANALYSISOFBONUS-COEFFICIENTSAFTERONECLAIM
Years123456
modelA166.2 156 147 139 131.7 125.2
modelB153.5 145.8 138.8 132.5 126.7 121.4
modelC165.5 140 131.7 123.8 111.4 107.5
Ascomparedwiththetwo othermodels,anoptimalBMS designedfrom
amodelwith dynamicrandome¤ectsand avarying autocorrelationfunc-
tionwill behaveinthefollowingway.Aclaimreportedentailsa greater
malusthantheoneobtained bytheBMSoftypeB,but thefollowingno-
claimdiscountsaremoreimportant.Thisisduetothefact thatperiods
withoutclaimreportedincreaseriskexposurebutalsotheageofclaims
24
reportedinthepast.ThisBMS providesimportantno-claimsdiscounts
forpolicyholderswhoreportedaclaimrecently,forinstance 15 percent
fromperiod1toperiod2inthelast table.Thisfeature can berelated
tosome clausesfound incompulsoryBMS,which provideimportantdis-
countsforbad driverswithrecentgood behaviour.InFrance forinstance,
adriverwithabonus-maluscoe¢cientgreaterthanthe coe¢cientapplied
tobeginners(less thanthree percentofthedriversare concerned)israted
accordingtothiscoe¢cientaftertwoconsecutive claimless years.Thisfea-
tureofreal-lifeoroptimalBMSentails strongincentivestodrive carefully
forpolicyholderswithabadaccidentrecord.
Letuscomparebrieyontheportfoliothethree BMSretainedforthe
precedingtable.Theyare…nanciallybalanced byconstruction,and the
dispersionofthebonus-maluscoe¢cientsisless importantfromthelast
BMSthanfromtheBMSoftypeAand Bafterafewyears,becausethe
totalcredibilityisinferior.Thiscannotbeseenasadrawbackbecausethe
dispersionofthebonus-maluscoe¢cientsisa goodcriterionofe¢ciency
onlyiftheBMSisconsistentwithrespect totime.Nowconsistencyprop-
ertiesdonotmakesenseiftheactualspecicationoftherandome¤ectsis
dynamic.
Inthelast table,we comparetherateofriskrevelation bythedi¤erent
BMS.Foranygiven durationofthepolicyholdershistory,wewant to assess
thegainofe¢ciencyobtainedfromfurtherobservation,and howitdepends
onthe correlogramretainedfortherandome¤ects.Wederivethestandard
deviationofbonus-maluscoe¢cientsfordi¤erentdurationsofthehistories
and forthedi¤erentrandome¤ectsmodels.Anincreaseofthestandard
deviationwiththedurationassessesthegainofe¢ciencyobtainedfrom
supplementaryobservation.
Computationsareperformedinthedi¤erentrandome¤ectsmodelsfor
a genericindividualwithanaveragefrequencyrisk.Theautocorrelation
functionsarethoseusedinTable5.Thevariance ofthebonus-maluscoef-
cientsarethoseofthelinear regressionwhich de…nesthelinearcredibility
predictor,thatistosay
td
Cov(N;UT+1)hb
V(N)i¡1d
Cov(N;UT+1)
withthenotationsofSection3.Fordi¤erentdurationsofthehistory,we
obtain
25
TABLE7
STANDARD DEVIATIONOFBONUS-MALUSCOEFFICIENTS
duration(years)1 5 10 20 40 5 !40
BMSoftypeA0.226 0.450 0.567 0.674 0.758 +69%
BMSoftypeB0.186 0.378 0.485 0.588 0.673 +78%
BMSoftypeC(1)0.228 0.355 0.407 0.472 0.538 +52%
BMSoftypeC(2)0.228 0.355 0.389 0.398 0.399 +12%
Thelastcolumnexpressesthegainofe¢ciencyobtained byaforty year
record,ascomparedto a veyearhistory, intermsofstandard deviation.
Thishistoryisavailableto all the competitorsintheFrenchmarketincase
ofswitchingto anotherinsurance company.Therst three BMSsystems
useautocorrelationfunctionswhichoverestimatetheactualvaluesforlags
greaterthan6.Thegainofe¢ciencyisthenoverestimated bytheseBMS,
and probablyunderestimated bythelastone.Thistypeofresultmaybe
ofinterestfor regulating authorities,asmentionedintheintroduction.
5Concludingremarks
ThemainfeaturesofanoptimalBMS derivedfromstationaryrandom
e¤ectswithadecreasingcorrelogramseemacceptabletopolicyholders.The
no-claimdiscountsareless importantafterafewyearsforclaimless drivers
thanthosederivedfromusualoptimalBMS. Ontheotherhand,theycan
bemuchmoreimportant (ifexpressedintermsofpremiumsupdating)
forpolicyholderswhoreportedclaimsrecently.Suchsystemswouldentail
strongincentivesforthesedriverstodrive carefully.
Ausefulresultfortheapplicationofactuarialmodelsisthefollowing.
Iftheautocorrelation betweenstationaryrandome¤ectsdecreaseswiththe
lag,thevariance ofatime-independentrandome¤ect (estimatedfromag-
gregated numbersand frequency-premiums)will decreasewiththeaverage
durationofthehistoriesusedinthe estimation.Forinstance,thevariance
estimatedfromtheobservationsoftherstperiodisequalto1:09,whereas
thevariance obtainedfromthefull historiesisequaltoc
¾2
U2=0:78 (see
Section4.3).Inthisframework,anoptimalBMSestimatedfromshort
historiesand appliedtoalongerdurationwill overestimatethepredictive
abilityofclaims.Thisresultprovidesasupplementaryreasontousethe
wholehistoryofthepolicyholdersininsurance rating.
26
References
[1]BESSON,J.L., and PARTRAT,C.(1992).Trendetsystèmesdebonus-malus.
ASTINBulletin22,11-32.
[2]BÜHLMANN,H.(1967).Experience rating and credibility.ASTINBul-
letin4,199-207.
[3]CHIAPPORI,P.A., HECKMAN,J.J.and PINQUET,J.(2000).Adverseselection
versusmoralhazard:Dopaneldata allowtodistinguish?Mimeo,
universityofChicago.
[4]CUKOR,G.(1964).MyFairLady.WarnerBros.Pictures.
[5]DIONNE,G., and VANASSE,C.(1989).Ageneralizationofautomobile
insurance ratingmodels:thenegativebinomialdistributionwitha
regressioncomponent.ASTINBulletin19 ,199-212.
[6]EMBRECHTS,P., MCNEIL,A.and STRAUMANN,S.(1999).Correlation:pit-
fallsand alternatives.RISK12 (5),69-71.
[7]GERBER,H., and JONES,D.(1975).Credibilityformulasoftheupdating
type.TransactionsoftheSocietyofActuaries27,31-52.
[8]HAUSMAN,J.A.(1978).Specicationtestsineconometrics.Econometrica
46,1251-1271.
[9]HENRIET,D.and ROCHET,J.C.(1986).Lalogiquedes systèmesbonus-
malusenassurance automobile.AnnalesdEconomie etdeStatistiques,
133-152.
[10]KUNREUTHER,H.and PAULY,M.V.(1985).Marketequilibriumwith pri-
vateknowledge:aninsurance example.JournalofPublicEconomics
26,269-288.ReprintedinFoundationsofInsurance Economics, Kluwer
AcademicPublishers(editors:G.Dionneand S.Harrington).
[11]LEMAIRE,J.(1977).Lasoifdu bonus.ASTINBulletin9,181-190.
[12]LEMAIRE,J.(1985).AutomobileInsurance:ActuarialModels.Kluwer
AcademicPublishers.
[13]PINQUET,J.(1997).Allowance forcostofclaimsin bonus-malus sys-
tems.ASTINBulletin27,No.1,33-57.
[14]SUNDT,B.(1988).Credibilityestimatorswithgeometricweights.Insur-
ance:MathematicsandEconomics7,113-122.
27
[15]ZEGER,L.S.(1988).Aregressionmodelfortimeseriesofcounts.
Biometrika74,721-729.
JEAN PINQUET
U.F.R.deSciencesEconomiques
UniversitédeParisX
200,avenuedelaRépublique
92001 NanterreCedex
France
email: pinquet@u-paris10.fr
MONTSERRATGUILLÉN
DepartamentdEconometria,EstadísticaiEconomiaEspanyola
UniversitatdeBarcelona
Diagonal, 690
08034 Barcelona
Spain
e-mail: guillen@eco.ub.es
CATALINA BOLANCÉ
DepartamentdEconometria,EstadísticaiEconomiaEspanyola
UniversitatdeBarcelona
Diagonal, 690
08034 Barcelona
Spain
e-mail: bolance@eco.ub.es
28
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter considers recurrent neural (RN) networks. These are special network architectures that are useful for time-series modeling, e.g., applied to time-series forecasting. We study the most popular RN networks which are the long short-term memory (LSTM) networks and the gated recurrent unit (GRU) networks. We apply these networks to mortality forecasting.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter introduces and discusses the exponential family (EF) and the exponential dispersion family (EDF). The EF and the EDF are by far the most important classes of distribution functions for regression modeling. They include, among others, the Gaussian, the binomial, the Poisson, the gamma, the inverse Gaussian distributions, as well as Tweedie’s models. We introduce these families of distribution functions, discuss their properties and provide several examples. Moreover, we introduce the Kullback–Leibler (KL) divergence and the Bregman divergence, which are important tools in model evaluation and model selection.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter considers convolutional neural (CN) networks. These are special network architectures that are useful for time-series and spatial data modeling, e.g., applied to image recognition problems. Time-series and images have a natural topology, and CN networks try to benefit from this additional structure (over tabular data). We introduce these network architectures and provide insurance-relevant examples related to telematics data and mortality forecasting.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter is on classical statistical decision theory. It is an important chapter for historical reasons, but it also provides the right mathematical grounding and intuition for more modern statistical tools from data science and machine learning. In particular, we discuss maximum likelihood estimation (MLE), unbiasedness, consistency and asymptotic normality of MLEs in this chapter.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter presents a selection of different topics. We discuss forecasting under model uncertainty, deep quantile regression, deep composite regression and the LocalGLMnet which is an interpretable FN network architecture. Moreover, we provide a bootstrap example to assess prediction uncertainty, we discuss mixture density networks, and we give an outlook to studying variational inference.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
The core of this book are deep learning methods and neural networks. This chapter considers deep feed-forward neural (FN) networks. We introduce the generic architecture of deep FN networks, and we discuss universality theorems of FN networks. We present network fitting, back-propagation, embedding layers for categorical variables and insurance-specific issues such as the balance property in network fitting, as well as network ensembling to reduce model uncertainty. This chapter is complemented by many examples on non-life insurance pricing, but also on mortality modeling, as well as tools that help to explain deep FN network regression results.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter discusses natural language processing (NLP) which deals with regression modeling of non-tabular or unstructured text data. We explain how words can be embedded into low-dimension spaces that serve as numerical word encodings. These can then be used for text recognition, either using RN networks or attention layers. We give an example where we aim at predicting claim perils from claim descriptions.
... Past claims history has led to the development of so-called bonus-malus systems (BMS) which often are in the form of multiplicative factors to the base premium to reward and punish good and bad past experience, respectively. One stream of literature studies optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245], Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas et al. [360] or Ágoston-Gyetvai [4]. Another stream of literature studies how one can optimally extract predictive information from an existing BMS, see Boucher-Inoussa [46], Boucher-Pigeon [47] and Verschuren [372]. ...
Chapter
Full-text available
This chapter illustrates the data used in this book. These are a French motor third party liability (MTPL) claims data set, a Swedish motorcycle claims data set, a Wisconsin Local Government Property Insurance Fund data set, and a Swiss compulsory accident insurance data set.
Article
Classical statistics deals with the following standard problem of estimation: Given : random variables X 1 , X 2 … X n independent, identically distributed, and observations x 1 , X 2 … x n , Estimate : parameter (or function thereof) of the distribution function common to all X i . It is not surprising that the “classical actuary” has mostly been involved in solving the actuarial equivalent of this problem in insurance, namely Given : risks R 1 R 2 … R n no contagion, homogeneous group, Find : the proper (common) rate for all risks in the given class. There have, of course, always been actuaries who have questioned the assumptions of independence (no contagion) and/or identical distribution (homogeneity). As long as ratemaking is considered equivalent to the determination of the mean, there seem to be no additional difficulties if the hypothesis of independence is dropped. But is there a way to drop the condition of homogeneity (identical distribution)?
Article
We investigate whether insurers base their solvency margins on risk factors even when operating under a supervisory regime where minimum solvency requirements do not fully take such risk factors into account. To do this, we use a dataset of about 350 Dutch insurers from all major lines of business during the pre-Solvency II period 1995-2005. We find that the levels of insurers' actual solvency margins are related to their risk characteristics and not to regulatory solvency requirements. Consequently, the vast majority of insurers hold much more capital than required, i.e. non-risk based capital requirements generally are not binding. Requirements are found to affect solvency adjustment behaviour, though. More specifically, below-target capital ratios are raised most rapidly by those insurers whose targets are relatively close to the regulatory minimum. One implication from our results is that, because insurers already follow a risk-based approach, the transition to the new European regulatory framework, Solvency II, is likely to be smooth.
Article
In the present paper we study credibility estimators with geometric weights in the framework of experience rating in motor insurance. We discuss how to find optimal weights. The estimators are compared with the traditional credibility estimators and shown to be more robust against a certain type of violations against the model assumptions. We also discuss advantages and disadvantages relative to ordinary bonus—malus systems.
Trendet systèmesdebonus-malus
  • J L Besson
BESSON, J .L., and PART RAT , C. (1992). Trendet systèmesdebonus-malus. ASTIN Bulletin 22, 11-32.
La logique des systèmes bonus-malusenassuranceautomobile
  • D Henriet
  • J C Rochet
HENRIET , D. and ROCHET , J .C. (1986). La logique des systèmes bonus-malusenassuranceautomobile. Annales d’Economieet deStatistiques, 133-152.
A regression model for time series of counts
ZEGER, L.S. (1988). A regression model for time series of counts. Biometrika 74, 721-729.
Adverse selection versus moral hazard: Do panel data allow to distinguish? Mimeo, university of Chicago
  • P A Heckman
CHIAPPORI, P.A., HECKMAN, J.J. and PINQUET, J. (2000). Adverse selection versus moral hazard: Do panel data allow to distinguish? Mimeo, university of Chicago.