ArticlePDF Available

Overconfidence and underconfidence: When and why people underestimate (and overestimate) the competition


Abstract and Figures

It is commonly held that, especially for outcomes under their control, people believe themselves to be better than others. However, such overconfidence is not universal. This paper presents evidence showing that people believe that they are below average on skill-based tasks that are difficult. A simple Bayesian explanation can account for these effects and for their robustness: On skill-based tasks, people generally have better information about themselves than about others, so their beliefs about others' performances tend to be less extreme than their beliefs about their own performances. This explanation is tested in two experiments that examine these effects' robustness to experience, feedback, and market forces. The discussion explores the implications for strategic planning in general and entrepreneurial entry in particular.
Content may be subject to copyright.
Overconfidence and Underconfidence 1
Overconfidence and Underconfidence:
When and Why People Underestimate (and Overestimate) the Competition
Don A. Moore Daylian M. Cain
Carnegie Mellon University Harvard University
5000 Forbes Avenue 1805 Cambridge Street
Pittsburgh, PA 15213 Cambridge, MA 02138
412-268-5968 617-678-2246
Fax: 412-268-7345 Fax: 617-495-7730
In press at Organizational Behavior and Human Decision Processes
* The authors appreciate the insightful comments, on earlier versions on this manuscript, by
Linda Babcock, J. Nicolas Barbic, Max Bazerman, Jason Dana, Paul Geroski, PJ Healy, Chip
Heath, Erik Hoelzl, George Loewenstein, Daniel Lovallo, Rob Lowe, John Oesch, John Patty,
Vahe Poladian, Jesper Sorensen, Lise Vesterlund, and Roberto Weber. Thanks to Sapna Shah
and Sam Swift for help with data collection. The authors also appreciate the support of
National Science Foundation Grant SES-0451736, a Berkman Faculty Development Grant at
Carnegie Mellon, and the assistance of John Duffy in the use of the Pittsburgh Experimental
Economics Laboratory at the University of Pittsburgh for collecting the experimental data.
Address correspondence to:
Overconfidence and Underconfidence 2
It is commonly held that people believe themselves to be better than others, especially for
outcomes under their control. However, such overconfidence is not universal. This paper
presents evidence showing that people believe that they are below average on skill-based tasks
that are difficult. A simple Bayesian explanation can account for these effects and for their
robustness: On skill-based tasks, people generally have better information about themselves than
about others, so their beliefs about others' performances tend to be more regressive (thus less
extreme) than their beliefs about their own performances. This explanation is tested in two
experiments that examine these effects' robustness to experience, feedback, and market forces.
The discussion explores the implications for strategic planning in general and entrepreneurial
entry in particular.
Key words: Entrepreneurial entry, overconfidence, controllability, skill, competence,
entrepreneurship, better-than-average, reference group neglect, egocentrism,
differential regression, comparative judgment
Overconfidence and Underconfidence 3
Overconfidence and Underconfidence:
When and Why we Overestimate (and Underestimate) the Competition
One of the most popular social psychology textbooks states, "For nearly any subjective
and socially desirable dimension…most people see themselves as better than average" (Myers,
1998, p. 440). For example, people report themselves to be above average in driving ability,
their ability to get along with others, and their chances of obtaining jobs that they like (College
Board, 1976-1977; Svenson, 1981; Weinstein, 1980). Some have argued that the most important
business decisions, including the decision to found a new firm, enter an existing market, or
introduce a new product are routinely biased by such overconfidence (Cooper, Woo, &
Dunkelberg, 1988; Dunning, Heath, & Suls, 2004; Hayward & Hambrick, 1997; Malmendier &
Tate, 2004; Odean, 1998; Zajac & Bazerman, 1991).
Recent evidence, however, has cast doubt on the generality of overconfidence. There are
a number of different domains in which people are systematically underconfident. For example,
people believe that they are below average in unicycle riding, computer programming, and their
chances of living past 100 (Kruger, 1999; Kruger & Burrus, 2004). It turns out that people tend
to predict that they will be better than others on easy tasks where absolute performance is high,
but worse than others on difficult tasks where absolute performance is low (Hoelzl & Rustichini,
2005; Moore & Kim, 2003; Windschitl, Kruger, & Simms, 2003). A number of researchers have
explained this effect as egocentrism: People focus on their own performances and neglect
consideration of others' (Camerer & Lovallo, 1999; Kruger, 1999). In this paper, we present a
Overconfidence and Underconfidence 4
new explanation for these better-than-average (BTA) and worse-than-average (WTA) effects.1
Our explanation holds that BTA and WTA effects are a natural consequence of regressive
estimates of others, which result from the fact that people have better information about
themselves than they do about others. We test this explanation using two experiments that
examine the robustness of BTA and WTA effects to experience, feedback, and market forces.
The results are consistent with our hypotheses, and have some provocative implications.
For the sake of exposition, let us introduce our theory by considering beliefs about
performance on a one-question test where the answer is either right or wrong. Before having
seen the problem, and without any information regarding its ease or difficulty, how likely are
you to solve it? One assumption might be that performance will be uniformly distributed across
possible outcomes (Fischhoff & Bruine De Bruin, 1999; Fox & Rottenstreich, 2003), leaving a
50% chance that you will solve the problem. Such an "ignorance prior" might make sense in the
absence of better information. Whatever it is, this prior is simply your baseline expectation for
your performance.
After taking the test, let us say that you know whether you solved the problem. What are
you to believe about others' performances? If your own performance is useless for predicting
others' (e.g., if you think that your good performance was based entirely on luck), your
estimation of others' performances ought to remain unchanged from your prior beliefs.
Therefore, doing well should leave you thinking that you did better than others; and doing poorly
should leave you thinking that you did worse than others. Even if your beliefs about your own
performance are helpful for predicting others', so long as there remains uncertainty about others'
performances, your predictions of them should depend on—and thus regress towards—the
1 We use the terms better- and worse-than-average to be consistent with prior work. We acknowledge that with
skewed distributions, it is indeed possible for the majority of people to be above (or below) average. This concern,
while valid, does not represent a problem for the results of the experiments we present.
Overconfidence and Underconfidence 5
ignorance prior. The upshot is that, when your absolute performance is better (or worse) than
your prior expectations, sensible Bayesian inference will lead you to make predictions of others'
performances that are between these priors and your current beliefs about your performance.
It is simple to extend this logic to a multi-item test: If one begins with the assumption that
one is just as likely as others to get any given item correct, after having taken the test, one should
estimate that others tend to score somewhere between one's own score and one's prior
expectation. For example, suppose you initially expected everyone to score about 70%, but you
think you scored about 90%. Depending on how indicative you feel your score is of others'
scores, you might predict others to score, say, 80%. If you scored 50%, you might predict others
to score, say, 60%. Notice that this perspective does not imply a belief in differences of overall
ability between you and others—across both tests you would predict the same average score for
everyone, namely 70%. But, on each test, you would be right to expect differences between you
and others, given better information about your own score on that test. For a more formal
development of this differential regression theory, see Appendix A.
Naturally, if the task includes no skill component whatsoever and performance is yet to
be determined entirely by chance factors or factors outside one's control, then there would be
little reason for people, on average, to predict that they would be above or below average.
Consistent with this reasoning, a number of researchers studying BTA effects have found that
they tend to be stronger on controllable tasks than on uncontrollable tasks (for a review, see
Harris, 1996). For instance, Camerer and Lovallo (1999) found that potential market entrants
were excessively confident about winning when competition was based on their skill but not
when winners were selected randomly. The authors used this evidence to claim that high rates of
entrepreneurial entry might be attributable to entrepreneurial overconfidence. However, because
prior studies have employed easy tasks, the conclusion that people believe they are better than
Overconfidence and Underconfidence 6
average on all skill-based tasks is unwarranted. Instead, our theory would predict WTA effects
when the task is more difficult than expected. We test this prediction in our first experiment.
The first experiment also tests our theory that BTA and WTA effects are attributable to the
differential regressiveness in estimates of self versus others. Experiment 2 addresses some
shortcomings of Experiment 1 and provides further support for our theory that better information
about self than others produces differential regressiveness.
Our design builds on that of Camerer and Lovallo (1999). They devised an N-player
coordination game in which, in each round, N players decide simultaneously and without
communication whether to enter a market or not. Each market had a pre-announced capacity, c,
which determined how many entrants earned money: Entrants ranked below c lose money,
entrants ranked c or above earned money, while non-entrants neither earned nor lost any money.
Each entrant's payoffs depended on his or her rank within the market, such that more money was
earned by better performance relative to other entrants.
Camerer and Lovallo's key contribution over prior market-entry experiments was
manipulating whether rankings were determined by either (a) a chance device, or (b) the entrant's
skill (in answering trivia questions). This manipulation was implemented within-subject, so the
same participants saw several rounds in which entrants were ranked based on a skill-based task
and several rounds in which entrants were ranked randomly. They found that skill-dependent
payoffs encouraged overconfidence and excess entry. Furthermore, excess entry was highest in
sessions for which it was common knowledge that all participants were trivia enthusiasts,
suggesting that participants were neglecting consideration of the reference group (similar
enthusiasts) with which they would be competing.
Overconfidence and Underconfidence 7
However, our theory predicts underconfidence and insufficient entry as well. To test this,
the new feature of our design is that skill-dependant payoffs are based on either an easy or a
difficult trivia game. Contrary to the notion that overconfidence tends to be pervasive on all
skill-based competitions, we predict that participants will only believe they are better than others
on simple tasks, and thus, we expect excess entry only there.
We also test Camerer and Lovallo’s explanation: that people focus on themselves and
simply neglect consideration of others (rather than miscalculating others’ performance) when
making comparative judgments. Camerer and Lovallo called this "reference group neglect" and
others have simply called it egocentrism (Chambers & Windschitl, 2004; Kruger, 1999). For
example, as examinations become more difficult, students become more pessimistic about their
final grades, even when it is common knowledge that the test will be graded on a forced curve
(Windschitl et al., 2003). While our differential regression explanation would predict the same
effect, the reference group neglect explanation holds that such false pessimism arises because
students neglect to consider the fact that other students are also likely to find the test difficult. In
other words, students trying to estimate their curved grades put too much weight on their own
absolute performances. The differential regression explanation, on the other hand, hypothesizes
that, regardless of the weighting attached to it, estimates of others will be more regressive than
estimates of self. In summary, reference group neglect is about errors in the weight one puts on
estimates of others' performance, while differential regression is about errors in the estimate that
is weighed. We will measure the differential weighting hypothesized by reference group neglect,
as well as other plausible alternative explanations, and show that the differential regression
hypothesized by our theory can better account for our results.
The design of Experiment 1 includes several features that should help people avoid the
mistake of ignoring or neglecting the competition: First, competitors are physically present,
Overconfidence and Underconfidence 8
salient, and individuated. Second, participants engage in a series of competitions over several
rounds with full feedback each round, giving them the opportunity to learn.
In each round of our experiment, all seven participants in each experimental session were
ranked relative to each other, according to a pre-announced method. Before the rankings were
made public, we asked participants whether or not they wanted to enter into a competition in
which only the three top-ranked entrants would make money. After they decided whether to
enter, participants answered a number of questions regarding their own performances and the
performances of others. Finally, participants received full feedback regarding absolute
performances (of self and others), how many participants chose to enter each round, and the
relative rankings of all (anonymously identified) entrants. The entire process was repeated over
12 rounds, with the three ranking methodologies (scores on a simple trivia quiz, scores on a
difficult trivia quiz, or randomly generated scores) manipulated within session between rounds.
There were 13 experimental sessions, each with 7 people for a total of 91 individual
participants. Participants were students at Carnegie Mellon University. Each participant was
endowed with $10. In each of the 12 rounds, participants decided whether to enter the market or
whether to stay out and risk nothing. Entering the market meant either a loss or a gain, based on
the entrant's rankings within that market. These payoffs are shown in Table 1.
The system by which players were ranked was announced publicly at the beginning of
each round. In four of the twelve rounds, rankings were determined randomly. After they
decided whether to enter, participants were assigned a randomly generated score from the set of
real numbers between 0 and 5, inclusive. In the remaining eight (skill-based) rounds, rankings
were based on trivia quizzes taken at the beginning of the round. Quizzes had five questions and
a sixth tiebreaker question. Four of these eight rounds' quizzes were simple (with a mean score
Overconfidence and Underconfidence 9
of 4.58 out of 5) and four were difficult (with a mean score of .41 out of 5). The tiebreaker
questions were scored based on the answer's distance from the correct numerical answer. The
presence of this tiebreaker question virtually eliminated the chance of a tied score (there were
none). The four simple and four difficult quizzes appear in Appendix B.
Table 1. Payoffs as a function of number of entrants and market rank. The table shows how
much money was paid out in total (column 4) and per entrant (column 5).
Payoff Cumulative
entrants Cumulative
payoff Cumulative expected payoff per entrant
(assuming ignorance about rankings)
1st $14 1 $14 $14
2nd $10 2 $24 $12
3rd $5 3 $29 $9.67
4th -$10 4 $19 $3.50
5th -$10 5 $9 $1.80
6th -$10 6 -$1 -$.17
7th -$10 7 -$11 -$1.57
In order to rule out idiosyncratic effects of order, we varied the sequence in which
participants encountered the three different ranking systems as follows. The different ranking
systems (R= random, S=simple, and D=difficult) were arranged in three different orders which
varied across experimental sessions: RSD, DRS, and SDR. Whatever sequence was arbitrarily
chosen for the session was repeated four times, making twelve rounds in four three-round blocks.
So, for example, if the first three rounds used the sequence RSD, all participants in that session
faced the same quizzes at the same time, with ranking systems in the order: RSD-RSD-RSD-
RSD. The order in which participants encountered the four different simple and difficult trivia
quizzes was also counterbalanced between experimental sessions.
Overconfidence and Underconfidence 10
In the eight skill-rank rounds, after taking the given quiz but before seeing their scores,
all participants simultaneously made their entry decisions (to enter or stay out). In the four
random-rank rounds, there were no quizzes, and all participants merely made their entry
decisions prior to learning their ranks. In all 12 rounds, after participants made their entry
decisions they then answered the following questions:
1. How many people total do you think will enter the market this round? Include yourself in
this figure if you chose to enter.
2. What percentage of the other six entrepreneurs in this round do you think will score
lower than you will (regardless of whether anyone enters)?
3. How many questions (out of 5) do you think you got correct this quiz? In random-rank
rounds, this question was replaced with the question: What score (out of 5) do you think
you will get this round?
4. How many questions (out of 5) do you think the average participant will get correct this
round? In random-rank rounds, this question was replaced with the question: What score
(out of 5) do you think the average participant will get this round?
5. If you chose to enter the market this round, what rank do you think you will get?
At the end of each round, participants received full feedback regarding each of the seven players'
individual scores, entry decisions, and rankings. In the eight skill-rank rounds, these scores were
their trivia quiz performances; in the four random-rank rounds, these were their randomly
generated scores. This information was posted using anonymous participant numbers on a
blackboard in view of all participants. Each participant knew his or her own number, but did not
know how the other numbers corresponded to those individuals present. Each of the 12 rounds'
Overconfidence and Underconfidence 11
results was left up for the entire experimental session. Participants' prior expectations regarding
difficulty were not measured in this experiment, but they are in the second experiment.
At the end of the 12 rounds, three rounds were chosen at random to determine payoffs.
The payoffs for these three rounds were averaged, and this amount was added to (or subtracted
from) participants' $10 endowment. Thus, the maximum possible payoff was $24 for a
participant who entered and was ranked first in each of the three payoff rounds ($10 endowment
plus an average of $14 in total over the three selected payoff rounds). It was also possible for a
participant to leave the experiment empty-handed if he entered and was ranked 4th or below on
each of the three payoff rounds ($10 endowment minus an average loss of $10 in total). Across
all participants, the mean final payoff was $13.01 (with a range of $4 to $24).
Equilibrium Predictions. As Table 1 (column 5) shows, entry has a positive expected
value so long as five or fewer players enter the market, assuming players have no information
about their own relative rank. If players are risk-neutral, then it is rational (i.e., there is a set of
pure-strategy Nash equilibria) for five players to enter each round. Lacking some coordinating
device for deciding which of each session's seven total players enter and which stay out, there is
a rational strategy (i.e., a mixed-strategy equilibrium) that is somewhat more complicated to
compute, but the result is that all players enter with a probability of 84%. Naturally, since only
the top three ranks actually win money, if all players know what their ranks will be, then only the
top three players (3/7 or 43% of the potential entrants) will enter. Therefore, if all players were
unbiased and imperfectly informed, we should expect between 43% and 84% of participants to
enter each round.
Predicting the equilibrium outcome without the assumption of risk neutrality is more
difficult. Even without information on their rankings, if everyone was sufficiently risk averse,
no one would enter, and if everyone was sufficiently risk seeking, everyone would enter. So,
Overconfidence and Underconfidence 12
following Camerer and Lovallo (1999), we use the random-rank condition (when players cannot
possibly have useful information on their rankings) to provide an empirical estimate of behavior
given players' risk preferences. Deviations from entering 84% of the time in random-rank
conditions suggest particular deviations from risk neutrality. And since all participants see all
conditions, their entry decisions in the different conditions serve as within-subject controls for
risk preferences. The difference in entry rates between the different conditions (random, simple,
and difficult) is the dependent measure of primary interest.
Hypotheses. Consistent with the differential regression explanation, we predict that
participants will believe themselves to be above average (and above median) on simple tests but
below average (and below median) on difficult tests. As a result, we predict that participants will
enter too frequently on simple-rank rounds and too rarely on difficult-rank rounds. We will take
entry rates into random-rank rounds as indicators of participants' behavior given ignorance about
their relative ranks and given their risk preferences. We predict that entry rates in random-rank
rounds will lie between entry rates in simple- and difficult-rank rounds.
The average random-rank round saw 4.27 entrants (61% entry rate—suggesting slight
risk aversion, on average). In contrast to this baseline, the average simple-rank round saw 5.0
entrants and the average difficult-rank round saw 2.94 entrants. In order to test for the statistical
significance of these differences, we conducted a (4) X (3) within-subjects ANOVA in which
each of the 13 experimental sessions served as a single independent case. The four three-round
blocks served as the first within-subjects factor and the three ranking systems served as the
second within-subjects factor. The results reveal a significant effect of the experimental
condition, F (2, 24) = 39.17, p < .001, η2 = .77. Contrast tests confirm the significance of both
Overconfidence and Underconfidence 13
the difference between entry rates in difficult and the random-rank rounds (p < .001) and the
difference between the simple- and random-rank rounds (p = .018).
The main effect of block is not significant, F (3, 36) = .82, p = .49, η2 = .06. Although
the interaction between block and ranking system (as shown in Figure 1) is marginally
significant in the overall ANOVA, F (6, 72) = 2.08, p = .07, η2 = .15, this does not appear to
result from a consistent reduction in the effect of ranking system as participants gained
experience: Entry rates in the difficult, random, and simple markets were 2.9, 4.4, and 5.1
respectively in the first block and were similarly 2.9, 4.2, and 5.7 respectively in the last block.
Figure 1 shows these means.
Figure 1. Entry rates in the three different ranking systems across the four blocks. Error bars
show standard errors.
Entrants per round
Explaining differences in rates of entry. There are four possible explanations for the
systematic effect of ranking systems on rates of entry: our differential regression explanation and
three alternatives. The first alternative explanation is that participants believed that others would
stay out of simple-rank rounds and so entry would have a higher expected value in simple
Overconfidence and Underconfidence 14
rounds. The data contradict this explanation: Participants predicted that there would be 5.2
entrants in the average simple-rank round (there were 5), 4.5 entrants the average random-rank
round (there were 4.27), and 3.2 entrants in the average difficult-rank round (there were 2.94).
These predictions are consistent over time and do not systematically get either better or worse
over the 12 rounds of play. So participants expected more competition in simple rounds, but
more entered there anyway.
The second alternative explanation is that potential entrants systematically overestimated
their own scores more on simple tasks than on difficult tasks. This explanation is also
contradicted by the data—the opposite is actually true. Participants underestimated their scores
on the simple quiz, reporting that they had gotten 4.41 out of 5 correct, when in fact they actually
got 4.58. This difference is revealed to be significantly different by a comparison of actual
versus self-reported scores in a (2) X (4) within-subjects ANOVA performed at the level of the
individual, where the four blocks served as the second within-subjects factor, F (1, 90) = 19.03, p
< .001. On the difficult test, by contrast, participants overestimated their scores, reporting that
they had gotten .95 correct when in fact they had only gotten an average of .41 correct, F (1, 90)
= 78.20, p < .001.
While this pattern at first seems incongruous, it ought not to be surprising: The tendency
for people to overestimate their own performances more on difficult than on simple tasks is one
of the more robust findings in the literature on overconfidence and calibration (Burson, Larrick,
& Klayman, 2006; Lichtenstein, Fischhoff, & Phillips, 1982). It can be readily explained using
the same regressive logic that we used to predict BTA effects on simple tasks and WTA effects
on difficult tasks: Because people have imperfect knowledge of their own scores, their estimates
of their own performances are slightly regressive (Erev, Wallsten, & Budescu, 1994; Juslin,
Winman, & Olsson, 2000). If people's estimates of their own performances are slightly
Overconfidence and Underconfidence 15
regressive, then their estimates of the performances of others are likely to be even more
regressive. This follows from the fact that people have better information about themselves than
they do about others, and so, people underestimate others more on simple tasks than on difficult
In simple rounds, our participants underestimated their scores (which rules out the second
alternative explanation) and they expected more competition—yet more entered there anyway.
Before we test the reference group neglect explanation, let us turn to our explanation for the
observed entry rates: differential regression. The data are consistent with differential regression.
People underestimated others' scores on simple quizzes more than their own, reporting that
others would score a regressive 4.2 out of 5, but that they themselves would score 4.41, F (1, 90)
= 13.92, p < .001. On the other hand, participants overestimated others' scores on difficult
quizzes more than their own, reporting that others would score a regressive 1.49 out of 5, but that
they themselves would score .95, F (1, 90) = 41.63, p < .001.
Because participants' estimates of others are so regressive, they believe themselves to be
above median on the simple quiz and below median on the difficult quiz. On the simple test,
participants reported that they expected to outscore 63% of the other participants taking the same
test. On the difficult test, by contrast, participants only expected to outscore only 46% of the
others. On the simple test, participants expected there to be 5.2 entrants and expected that their
rank among entrants would be 2.6. On the difficult test, participants expected only 3.2 entrants
yet expected to rank 2.7. Figure 2 shows patterns in participants' beliefs about percentile
rankings across the three treatments and four blocks. Differences between simple and difficult
treatments persist throughout the experiment, despite the provision of feedback. There is little
evidence for learning in this figure.
Overconfidence and Underconfidence 16
Figure 2. Participants' estimated percentile rankings (percentage of others worse than them) in
the three different ranking systems across the four blocks. Error bars show standard
1 2 3 4
Estimated percentile rank
These results provide a hint as to the reasons for the durability of differences in entry
rates across different ranking systems. Participants got consistent feedback showing that they
tended to underestimate their relative performances on the difficult quizzes and that they tended
to overestimate their relative performances on the simple quizzes; but they nevertheless had
specific new information about each quiz that might have undermined their willingness to attend
to this general historical fact. Even if an individual notices that she has consistently
overestimated her relative performance on simple quizzes, if she takes a new quiz and scores
highly relative to her prior expectations, the inference that she is likely to be above average may
still be a sensible one. So long as there is more uncertainty about others' scores than about her
own, her predictions of others' scores will remain more regressive.
Fourth explanation: Reference group neglect. We have presented evidence for the idea
that estimates of others are regressive. The remaining question is whether the differential
regression explanation alone can account for the observed differences in entry rates between
Overconfidence and Underconfidence 17
experimental treatments, or whether there is any evidence of reference group neglect. Reference
group neglect posits that participants chose to enter on simple rounds and stay out on difficult
rounds not because they actually believed that they would score any differently from others—but
because they just weren't paying enough attention to others (Klar & Giladi, 1997; Kruger, 1999;
Windschitl et al., 2003). If people neglect to consider the group and instead focus on themselves
when estimating their relative standing, we should observe that beliefs about own performance
are weighted more heavily than are beliefs about others. In what follows, we test this prediction
in a pair of regression analyses (in Table 2) predicting comparative judgments using performance
by self and others. As the remainder of the results section details, the substantial majority of the
effect of difficulty can be accounted for by greater regressiveness in estimates of others than of
Table 2. Actual and perceived value of participants' own scores and the scores of others for
estimating percentile rank.
Model 1 predicting actual percentile rank Model 2 predicting self-reported percentile rank
Independent Variable B Std.
Error Independent Variable B Std.
Own actual score .201* .005 Own estimated score .111* .006
Actual average score -.201* .006 Estimated average score -.077* .008
R2 .56* R2 .27*
*p < .001
Model 1 in Table 2 is the optimal model, predicting participants' actual percentile ranks
within each round using their own scores and actual average scores for the round as independent
variables. The results show, not surprisingly, that participants' own actual scores and average
Overconfidence and Underconfidence 18
scores have B coefficients that are of similar size but opposite signs. We compare this result
with participants' self-reported beliefs, using participants' beliefs about their own scores and
beliefs about the average score to predict their self-reported percentile rank. The first apparent
difference between these two analyses is more noise in self-reported beliefs than in actual
performance, as shown by the smaller value of R2. It ought not to be a shock that people's
estimates of their own scores and their percentile rankings are imperfect.
The second and more important difference is that participants' beliefs about their own
scores were weighted more heavily than were their beliefs about others' scores. To be precise,
the weight attached to other (|B| = .077) is 69% the size of the weight attached to self (B = .111),
and this difference is statistically significant, t (1088) = 3.4, p < .001. This shows evidence of
reference group neglect but raises the following question: What proportion of our primary result
(the effect of difficulty on entry rates) can be accounted for by differential regression and how
much can be accounted for by reference group neglect? In order to answer this question, we first
begin by assessing the experimental treatment's effect on entry decisions. We did this by
regressing entry rates on experimental treatment. The independent variable in this regression
was equal to 1 for simple-rank rounds, 0 for random-rank rounds, and -1 for difficult-rank
rounds. When we conduct this analysis at the level of the round, the R2 value of this regression
shows that the experimental treatment accounts for 28% of the variation in entry rates across all
rounds, F (1, 154) = 59.67, p < .001. However, more useful to our purposes is this analysis
performed at the level of the individual. There are two major reasons to expect R2 to be lower in
the regression conducted at the individual level: First, participants' entry decisions are partially
driven by their actual relative performance, which is uncorrelated with the experimental
treatment; second, idiosyncratic individual-level factors such as risk preferences affect entry
decisions. At the individual level, since the dependent variable is dichotomous (entry or not), a
Overconfidence and Underconfidence 19
logistic regression is the more appropriate statistical test.2 The Nagelkerke R2 value of this
logistic regression reveals that the experimental treatment accounts for 7.9% of the variation in
individual entry decisions, and is statistically significant, χ2 (1) = 65.67, p < .001. What this
means is that 7.9% is the total size of the effect of difficulty on entry, and we must now
determine how much of it can be accounted for by differential regression and how much of it
cannot be.
In order to assess the effect of differential regressiveness, we next regressed entry
decisions on participants' beliefs about their relative performance, as measured by the difference
between their estimated absolute scores for self and for others. Beliefs about relative
performance account for 24.4% of the variation in entry rates, χ2 (1) = 218.96, p < .0001. The
mere fact that participants' beliefs about relative performance are predictive of their entry
decisions is neither impressive nor interesting—it would be surprising if they were not. The
interesting question is whether these beliefs about relative performance can account for the effect
of the experimental manipulations on entry decisions. In order to test for such a mediation
effect, we conducted a third regression that included both experimental treatment and
participants' self-reports of relative performance. The resulting Nagelkerke R2 value indicates
that these two variables, combined, account for 26.0% of the variation in entry decisions. The
inclusion of experimental treatment provides only a 6.7% increase in variation explained (over
the 24.4% using only the relative performance). However the B coefficient associated with
experimental condition remains significant (B = .34, SE = .09, p < .001). The significance of
experimental treatment suggests that there is an effect of difficulty that is distinct from
2 For the sake of simplicity, we present logistic regression analyses in which each subject in each round serves as the
unit of analysis (91 subjects * 12 rounds = 1092 observations). The results we present are not appreciably different
when the same analyses are conducted using a hierarchical linear model which treats subjects as random effects and
accounts for the fact that experimental treatments are nested within trial blocks which are in turn nested within
experimental sessions.
Overconfidence and Underconfidence 20
participants' beliefs about their relative standing. Of the total 7.9% of variation in entry
decisions accounted for by our experimental treatment, 1.6% (or 26% minus 24.4%) cannot be
accounted for by participants' self-reported beliefs about their own performance relative to
others. This 1.6% represents 20% of the variation due to the experimental treatment that remains
unexplained. Reference group neglect is the most viable alternative explanation for this
unexplained 20%, but the substantial majority of the effect of difficulty (80%) can be accounted
for by greater regressiveness in estimates of others than of self.
The results of the first experiment show that confidence regarding one's competitive
performance depends on the type of competition. Contrary to prior evidence (Camerer &
Lovallo, 1999; Harris, 1996; Klein & Kunda, 1994), we show that controllable tasks do not
necessarily elicit more overconfidence than chance tasks. In difficult-rank rounds, people
avoided entering. People overestimated others' performances, leading them to stay out of the
competition despite the fact that they accurately forecast few other entrants. Thus, skill-based
tasks do not always elicit overconfidence and entry rates depend in part on how difficult
potential entrants see the task.
Participants' prior expectations regarding difficulty play an important role in our theory,
but the first experiment did not measure them. Experiment 2 was designed to address this
shortcoming. Furthermore, our theory posits a fundamental role for information about
performance—one's own and others'. Experiment 2 allows us to observe the effect of
information on participants' beliefs as they learn first about their own performances and then
about the performances of others.
Overconfidence and Underconfidence 21
Because our differential regression explanation describes the mechanisms by which
errors in entry occur, it also offers useful insights into which interventions might be useful for
reducing errors and which interventions are unlikely to be effective. Experiment 2 tests these
interventions. Participants were first told that they would be taking either a difficult or simple
quiz and were then asked to predict the outcome (Time 1). After taking the quiz (Time 2),
participants were invited to revise their answers to their prior estimates of absolute and relative
scores. Our theory would predict that information about one's own performance provided at
Time 2 would produce BTA on easy tasks and WTA on difficult tasks. Finally, participants were
given full information about how others scored on the same quiz they took, and they were asked
to report the same comparative judgments (Time 3). Our theory would not predict BTA and
WTA effects at Time 3, in the presence of excellent information about others. Previous research
has shown that information about others can reduce BTA effects (Alicke, Klotz, Breitenbecher,
Yurak, & Vredenburg, 1995). Here, we test whether it can also reduce WTA effects.
Participants. We recruited 128 undergraduate students at Carnegie Mellon University by
offering them a base payment of $2 plus from $0 to $8 on top of that. Experimental sessions
were advertised under the name "Games of skill" with the following description: "Participants
will be playing a game in which they can earn money. How much you get paid will depend on
exactly how things come out."
Design. The experiment had a 2 (quiz difficulty: simple vs. difficult) X (3) (time of
wager: before quiz vs. after quiz vs. after results) mixed design. Quiz difficulty was manipulated
between subjects and time served as a within-subjects factor.
Overconfidence and Underconfidence 22
Procedure. Participants were each given $4 and invited to bet as much as they wanted on
winning a trivia competition against a randomly chosen opponent. Participants were truthfully
told that their opponents' scores would be selected at random from a group of 144 students who
had previously taken these same quizzes as a part of a different study (reported in Moore and
Kim, 2003, Experiment 3). None of the 128 participants in the present study had participated in
that prior study. The test would consist of 10 items plus an eleventh tiebreaker question that
virtually eliminated the chance of a tied score. Winning participants would double the amount
they bet; those who lost would keep only the un-wagered portion of their $4. Note that the
second and third time they bet, participants were told that the most recent bet would be the one
that counted.
Participants in the simple quiz condition were told they would take a simple trivia quiz
and shown the following example question and answer:
What is the common name for the star inside our own solar system?
Answer: the Sun
Participants in the difficult quiz condition were told they would be taking a difficult trivia quiz
and shown the following example question and answer:
What is the name of the closest star outside our solar system?
Answer: Proxima Centauri
Participants were then asked how much they wanted to bet. After they bet, participants were
given a questionnaire that asked:
(1) "How many of the 10 questions do you think you will get right?"
(2) "How many of the 10 questions do you think your opponent will get right?"
Overconfidence and Underconfidence 23
(3) "What percentage of the group will have scores below yours? (If you expect your score
will be the very best, then put 100. If you expect your score will be exactly in the middle,
put 50. If you expect your score will be the lowest, put 0.)"
Questions 1 and 2 were objective measures of absolute evaluation for self and for
opponent. Question 3, like the bet, was a direct measure of beliefs about relative standing. After
participants had answered all these questions, they were given an actual trivia test. The
questions from the difficult and simple quizzes are listed in Appendix C. Participants were then
told, "Now that you have taken the quiz, you may choose to revise your answers to these
questions. Please answer all the questions, whether or not you put the same answers as before."
Then participants were asked how much they wanted to bet and were asked the same list of
questions again. These were their Time 2 responses.
After they had answered all the questions at Time 2, participants were then given truthful
feedback about the scores of the previous test-takers from whose ranks their randomly selected
opponent would be drawn. For example, those who took the simple quiz were informed that:
"The average score is 8.71 out of 10, with a standard deviation of 1.1." Those who took the
difficult quiz were told: "The average score is 1.48 out of 10, with a standard deviation of 1.01."
Participants were also given a breakdown of the percentage of others who got each of the 11
possible scores (from 0 to 10) on the quiz. After they had a chance to review this information,
participants were told, "Now that you have seen how others did, you may choose to revise your
answers to these questions. Please answer all the questions, whether or not you put the same
answers as before." Then participants were asked how much they wanted to bet and were asked
the same list of three questions again. These were their Time 3 responses. The bet that was
counted for computing payoffs was this third and final one.
Overconfidence and Underconfidence 24
Our differential regression explanation holds that BTA effects and WTA effects result
when people have good information about themselves but lack information about others, such as
at Time 2 after taking the quiz. At Time 3, after getting good information about others, these
effects should go away. Time 1 beliefs are useful for assessing participants' priors, but are based
on so little information that our theory would not make strong predictions regarding their beliefs.
We shall test both our differential regression explanation and that of reference group neglect.
Results and Discussion
Manipulation check. As expected, the simple quiz resulted in higher scores (M = 8.25 out
of 10, SD = 2.01) than did the difficult quiz (M = 1.54 out of 10, SD = 1.34), F (1, 126) = 490.39,
p < .001, η2 = .80.
Participants' predictions at Time 1. At Time 1, participants who had seen only an easy
sample question (and were about to take—but had not yet taken—the simple test), predicted that
they would score 7.22 (SD = 1.57) and that others would score 6.41 (SD = 1.79) out of 10.
Those who saw only a difficult sample question predicted that they would score 5.22 (SD = 1.90)
and that others would score 4.92 (SD = 1.65). We analyzed these predictions using a 2
(difficulty) X (2) (target: self vs. other) mixed ANOVA. The results reveal a main effect of
target, F (1, 124) = 11.97, p = .001, η2 = .09, since people predicted that they would do better
than would others. The differential regression explanation cannot account for this effect; the
results suggest some basic amount of self-enhancement. The main effect of difficulty is, of
course, also significant, F (1, 124) = 46.13, p < .001, η2 = .27. The target X difficulty interaction
effect does not attain statistical significance, F (1, 124) = 2.77, p = .099, η2 = .02.
Tests of differential regression at Time 2. At Time 2, the differential regression
explanation would hypothesize that people predict better relative performance (BTA) on simple
tasks and (WTA) worse relative performance on difficult tasks. This would manifest itself in a
Overconfidence and Underconfidence 25
significant interaction between difficulty (simple vs. difficult) and target (self vs. other). Indeed,
when we subjected estimates of absolute performance to this 2 X (2) ANOVA, the difficulty X
target interaction emerges as significant, F (1, 120) = 20.77, p < .001, η2 = .15.3 At Time 2,
participants reported believing that they scored better (M = 8.30, SD = 1.49) than their opponents
(M = 7.83, SD = 1.28) on the simple quiz, t (61) = 2.94, p = .005, η2 = .12. But they also
reported believing that they scored worse (M = 2.39, SD = 1.31) than their opponents (M = 3.30,
SD = 1.61) on the difficult quiz, t (59) = -3.48, p = .001, η2 = .17.
Consistent with our theory, the increase in BTA and WTA effects from Time 1 to Time 2
is largely attributable to changes in beliefs about one's own score. On average, participants
changed their estimates of their own scores by 2.34 points (SD = 1.77). However, they only
changed their estimates of others’ scores by 1.92 points (SD = 1.76), and this difference is
significant by paired-samples t-test, t (123) = 2.34, p = .02. Furthermore, these changes mediate
the difference on bets between difficulty conditions from Time 1 to Time 2. We included these
two change measures in a regression predicting change in participants' bets from Time 1 to Time
2, along with a dummy variable for difficulty. Their inclusion renders difficulty non-significant,
β = .02, p = .87. As our theory would predict, changes in self-estimates were a significant
predictor of changes in bets, β = .47, p < .001. However, changes in other-estimates were not
significant, β = -.13, p = .16.
The differential regression explanation would not predict BTA and WTA effects at Time
3, when participants have good information not only about themselves but about others. Indeed,
the same 2 X (2) ANOVA on absolute evaluations at Time 3 does not produce a significant target
3 Naturally, the main effect of difficulty is also significant, since participants predict higher scores on the simple
than on the difficult test, F (1, 120) = 606.16, p < .001, 2 = .84. The main within-subjects effect of target (self vs.
opponent) is not significant, F (1, 120) = 1.40, p = .24, 2 = .01.
Overconfidence and Underconfidence 26
X difficulty interaction, F (1, 124) = .02, p = .89.4 On the simple quiz, participants predicted
similar scores for themselves (M = 8.31, SD = 1.62) and for their opponents (M = 8.14, SD =
1.37). Likewise on the difficult quiz, participants predicted similar scores for themselves (M =
2.08, SD = 1.19) and for their opponents (M = 1.90, SD = .71). Figure 3 shows participants’ self-
reported percentile ranks. Furthermore, as we would have predicted, estimates of others' scores
changed more from Time 2 to Time 3 than did estimates of self. Estimates of others changed by
an average of 1 point (SD = 1.18), whereas estimates of self only changed by .4 points (SD =
1.05), and these two are significantly different from one another t (123) = -4.57, p < .001. And
consistent with our theory, the reduction in BTA and WTA effects on bets is mediated by
changes in people's beliefs about others, β = -.31, p = .003, not the self, β = .16, p = .07.
Figure 3. Participants' estimated percentile rankings (percentage of others worse than them) in
the two difficulty conditions at three points in time. Error bars show standard errors.
Time 1 Time 2 Time 3
Percentile rank
Tests of reference group neglect. The reference group neglect hypothesis predicts that
direct comparisons (like estimates of percentile rank) will show stronger BTA and WTA effects
than will indirect comparisons (computed by subtracting absolute estimates of others from self)
4 Naturally, the main effect of difficulty remains significant, F (1, 124) = 931.98, p < .001, 2 = .88. The main effect
of target remains insignificant, F (1, 124) = 2.42, p = .07, 2 = .03.
Overconfidence and Underconfidence 27
which make others' performance salient. The standard test is to regress comparative judgment on
absolute evaluations of target and referent. Using this standard test, we replicate the result that
comparative evaluation is strongly associated with self-evaluation but more weakly predicted by
absolute evaluation of others. We regressed percentile estimates on predictions of point scores
by self and other for responses at Time 1, before participants had taken the actual test. As Table
3 shows, the β coefficient for absolute self-evaluation is .86, p < .001, indicating that absolute
and relative self-assessment are strongly correlated. The β coefficient for other-evaluation,
however, is -.53, p < .001, is only 62% the magnitude of the coefficient for self. This finding is
consistent with reference group neglect.
Table 3. Experiment 2's results for the three different measures of comparative judgment at three
points in time. The third column shows the effect size of the difference between simple
and difficult conditions, and asterisks the significance of the t-test comparing difficulty
conditions. Regression results predicting indirect comparative judgment for the three
different measures of comparative judgment appear in the fourth and fifth columns.
Simple vs.
Difficult Regression results
Comparative Judgment Effect size (η2) β (Self) β (Other)
1 Bet .02 .53*** -.27*
1 Percentile rank .04* .86*** -.53***
1 Indirect comparison .03 1.07† -1.0†
2 Bet .15*** .92*** -.48**
2 Percentile rank .16*** .93*** -.49***
2 Indirect comparison .15*** 1.86† -1.53†
3 Bet .03* 1.67*** -1.35***
3 Percentile rank < .001 1.84*** -1.69***
3 Indirect comparison .00 3.10† -3.01†
* p < .05, *** p < .001, † Independent variables perfectly account for dependent variable
Note that this differential weighting changes as people gain information. At Time 2,
when participants had more information about themselves, the weight put on other-estimates
(.49) is only 53% the size of the weight put on self-estimates. But at Time 3, when people had
better information about others, other-estimates (β = 1.69) carry 92% the weight placed on self-
Overconfidence and Underconfidence 28
estimates (β = 1.84). If reference group neglect affects how people bet, then we ought to observe
some effect of test difficulty on bets, over and above the effect of differential regressiveness on
estimates of self and others' actual performances. We tested this as we did in Experiment 1.5
The result was that 74% of the effect of difficulty on bets at Time 2 could be explained by
differential regression. However, this test may claim too much credit for differential regression.
As the results in Table 3 highlight, better information about self than others appears to produce
both differential regression and differential weighting. When they are confounded, this test will
give all the credit to differential regression over differential weighting.
At Time 3, the effect of test difficulty on bets shrinks dramatically: Difficulty accounts
for only 3.4% of the variance in bets. Our theory would not predict that test difficulty would
affect comparative judgments when people possess complete information regarding performance
by self and others. Indeed, statistically speaking, differential regressiveness accounts for only
3% of this small effect. The remaining 97% is most likely attributable to the egocentric
overweighting of self-knowledge over other-knowledge.
The present results offer two primary findings. First, the results of the first experiment
show that confidence regarding one's competitive performance depends on the ease of the task.
Contrary to prior evidence (Camerer & Lovallo, 1999; Harris, 1996; Klein & Kunda, 1994), we
show that controllable tasks do not necessarily elicit more overconfidence than chance tasks.
People underestimated others' performances on simple tasks but overestimated them on difficult
tasks, leading them to enter with confidence on simple rounds despite the fact that they
5 First, we began with the primary effect of test difficulty on bets. At Time 1, test difficulty only accounted for a
statistically insignificant 1.9% of the variance in bets, as shown by the R2 value associated with a regression
predicting bets using a dummy variable for experimental condition. At Time 2, however, difficulty accounts for
15% of the variance in bets.
Overconfidence and Underconfidence 29
accurately forecast numerous other entrants. Yet in difficult-rank rounds, people decided not to
enter: They overestimated others' performances, leading them to stay out of the competition
despite the fact that they accurately forecast few other entrants. Thus, skill based tasks do not
always elicit overconfidence; instead, confidence and entry rates depend in part on how difficult
potential entrants see the task.
The second contribution of this paper is that we identify the cause for what appear to be
myopic interpersonal comparisons, namely, better information about one's own performance than
about the performance of others. When a task is simpler than people expect it to be, people's
estimates of others' performances regress downward and a majority will conclude that they are
better than others. When a task is more difficult than expected, estimates of others' performances
will regress upward and a majority will conclude that they are worse than others. Experiment 2
shows that these WTA and BTA effects are strongest when people are confident regarding their
own performances but unsure of the performances of others. This may also explain why BTA
and WTA effects are stronger when people compare themselves to some vague group than when
they compare themselves to a specific, known individual (see Hoorens & Buunk, 1993; Klar,
Medding, & Sarel, 1996; Klein & Weinstein, 1997; Perloff & Fetzer, 1986; Price, 2001;
Windschitl et al., 2003). It may also help explain why BTA effects have been shown to be
stronger for observable performances than for tasks or traits where people only know about
themselves and cannot observe others' performances directly (Dunning, Meyerowitz, &
Holzberg, 1989; Suls, Lemos, & Stewart, 2002). Given that differential regression explains most
of the effect of difficulty on entry and on bets in our experiments, providing decision-makers
with better information about the performance of others is likely to be the most effective way to
eliminate this cause of myopic comparisons.
Overconfidence and Underconfidence 30
Our studies experimentally manipulated the information people had, making it impossible
for us to measure differences in the degree to which people seek out information about
themselves and others (for other studies that have measured this, see Moore, Oesch, & Zietsma,
in press; Radzevick & Moore, 2006). However, our results nevertheless show that people do not
always use information as they should. When making social comparisons, participants ought to
have given the same weight to information about themselves as to information about others. The
fact that one's competitors are doing poorly on some task is just as important as the fact that one
is doing poorly. Consistent with the reference group neglect explanation, however, our
participants' self-reported beliefs regarding their own performance were weighted more heavily
than their beliefs regarding opponents' performance. But this egocentrism effect is not the
driving factor behind WTA and BTA effects and their consequences for behavior. Differential
weighting (reference group neglect) accounts for a small proportion of the effect of difficulty on
entry rates and bets.
We should also note that, besides reference group neglect, there are other viable
explanations for why people's judgments would appear to weight self more heavily than others.
For example, people easily conflate relative and absolute evaluation on vague subjective
measures (Baron, 1997; Biernat, Manis, & Kobrynowicz, 1997). The conflation error occurs
when people answer the question, "How good are you relative to others?" as if they were
answering the question "How good are you?" (Klar & Giladi, 1999). Unlike differential
weighting due to reference group neglect, the conflation explanation is exceedingly mundane:
Vague measures facilitate confusion between relative and absolute evaluation (Burson &
Klayman, 2005; Moore, 2005). Conflation can make comparative evaluations appear to
overweight the self because the person does not take herself to be making a comparative
Overconfidence and Underconfidence 31
Although we have attempted to distinguish the differential regression explanation from
reference group neglect, we should also note their fundamental compatibility. Both are caused
by the greater accessibility and quality of information about the self than about others. Less
information about others leads people to make more regressive estimates of others but also
probably leads to further underweight of those regressive estimates (Kruger, Windschitl, Burrus,
Fessel, & Chambers, 2006).
Managerial and Economic Implications. Our results have implications for understanding
entrepreneurial entry. While we do not take a stand on the question of whether overall rates of
actual entrepreneurial entry are excessive, we instead note that rates of entry vary considerably
between industries. Some industries, such as retail clothing stores, restaurants, and bars, are
marked by persistently high rates of entry and high rates of subsequent exit (U.S. Small Business
Administration, 2003). Indeed, one of the stylized facts to emerge is that rates of entry and exit
are highly and positively correlated (Dunne, Roberts, & Samuelson, 1988; Geroski, 1996; Mata
& Portugal, 1994). Differences in rates of entry are not well accounted for by the size of an
industry, the profitability of its firms, or barriers to entry (Geroski, 1996). So, if new firms enter
an industry because of above-normal profits and exit an industry because of below-normal
profits, then one would instead expect entry and exit to be negatively correlated such that high
failure rates meant low entry rates, at least in the short term. Yet the correlation between entry
and exit in any given year is around .7. The results presented in this paper suggest a possible
explanation. Perhaps industries that see persistent high rates of entry are those that potential
entrants view as "easy" or in which they feel capable (Greico & Hogarth, 2004). Such industries
are then likely to see more intense competition, lower profits, and higher rates of failure.
Experiment 1 shows that this might occur in spite of entrants' correct prediction that they will
Overconfidence and Underconfidence 32
have lots of competition in "simple" markets. Indeed, even when they underestimate their own
absolute abilities, entrants will underestimate the abilities of their competition even more.
However, given that our experimental participants were not actual entrepreneurs with
substantial quantities of money at stake, we must be cautious about generalizing our results from
errors made in the lab. Might actual entrepreneurs learn to avoid the biases in comparative
judgment shown by participants in the present experiments? While it is possible that experience
may allow actual entrepreneurs to learn to overcome these errors, it is unclear how much
experience is needed for such learning to take place. Participants in the market entry game were
students at a selective university and also experienced 12 rounds with full feedback. Perhaps this
experiment included too few trials for them to learn to solve this problem. If this is the case,
however, entrepreneurs are likely to make the same mistake. After all, even the most
experienced entrepreneurs rarely get the opportunity to start more than a handful of firms.
Furthermore, our experimental setup was more transparent, assessment of the competition was
clearer, and the causes of success were more obvious than they are likely to be for most
We must note that both our theory and our results are bounded. We do not claim that the
differential regression explanation (a cognitive explanation) accounts for all BTA and WTA
effects. Motivation and bias do influence comparative interpersonal judgments in important
ways (Kunda, 1990). It is also clear that other cognitive explanations such as reference group
neglect can account for some biases in comparative judgment and in strategic decision making,
as shown in the present findings as well as in other work (Klar, 2002; Moore, 2004; Rose &
Windschitl, 2006; Windschitl et al., 2003). However, the errors showcased in this paper seem to
be more about not having good information about one's competition, as opposed to merely
ignoring the competition.
Overconfidence and Underconfidence 33
Appendix A: Formalization of the Differential Regression Explanation
In this appendix, we attempt to formalize our theory, first in general terms, then with a
specific example. Our point in this appendix is not to suggest that it is possible to predict with
certainty what individuals will believe—given a multitude of constraints that may or may not be
realistic (we let our data speak to how real people behave)—nor do we intend to provide a
generalized proof or justification of the decision process we are suggesting is at work. Here, we
wish only to provide insight on why WTA/BTA effects might occur in groups of reasonable
Let us restrict our analysis to some specific group of n individuals who all expect to take
a test together. These people, on average, expect that their performances will be average,
relative to the others in the group. It is not necessary that everyone believe that they are exactly
average, just that beliefs are balanced within the group. In other words, for every person (or
subset of people) who believes that they are better than others (or better than some individual)
there is another person (or subset of people) who believes that they are worse than others (or
worse than some individual) to the same degree, and vice versa.
Within the group, let S be the average of all individuals' estimates of the absolute
performance of self; let O = the average of all individuals' estimates of the absolute performance
of others. To be precise:
Sn)...( 21
where sn is the nth person's self-estimate.
Overconfidence and Underconfidence 34
On)...( 21
where on is the nth person's estimate of (the average of) others' scores (not including self).
OS nn )...()...( 2121
OS nn )...( 2211
SO is equal to the average comparative judgment of self to others. When SO is positive, it
implies a BTA effect: On average, people believe that they are better than others. When SO is
negative, it implies a WTA effect: People believe they are worse than others. At the outset,
assume that S = O (on average, people expect that their performance will be average, relative to
the others).
Let people acquire additional information about their own (past or anticipated)
performance. To the extent that this information about self is different than prior information, it
will justify updating beliefs about one's own performance (away from the prior). To the extent
that information about the self is more useful for estimating performance by self than others, it
will lead to greater updating of S than of O. Therefore, estimates of others will tend to be closer
to the prior than will estimates of self. In other words, O regresses to the prior more than does S.
We call this rule "Rule O":
Rule O: Since (whenever possible) O is more regressive than S, O must be closer to the prior
than is S. (When S is maximally regressive, O is equally regressive.)
Overconfidence and Underconfidence 35
There are three possible relationships between S and the prior:
Case 1: S > prior, meaning that, on average, people think that they did better than they expected
to do; thus S > O (or else a contradiction follows; if we assume S > O to be false, i.e., if O => S,
and (as given) S > prior, then O => S > prior, and O would be farther from the prior than S,
violating Rule O), and people will, on average, believe they performed better than others.
Case 2: S < prior, meaning that, on average, people think that they did worse than they expected
to do; thus S < O (ELSE: O <= S < prior, and O would be farther from the prior than S, violating
Rule O), and people will, on average, believe they performed worse than others.
Case 3: S = prior, meaning that, on average, people think that they did as they expected to do;
thus S = O (ELSE: O > S = prior (or O < S = prior), and O would be less regressive than S,
violating Rule O), and people will, on average, believe they performed the same as others.
Example: Suppose there are three test takers, A, B, C, each completing a test that is scored out of
100. Suppose that, prior to taking the test, the average expected score is 50. Suppose A's actual
score = 90; B's actual score = 65; C's actual score = 40. The average actual test-score = 65. On
average, the test takers did better than expected (65 > 50), even though some did worse than
expected (e.g., C scored 40). Suppose, for the sake of simplicity, that all three know exactly how
well they themselves did, but they know their sense of others is imperfect. Granted, specific
numerical examples of estimates will depend on individual test-takers and specific tasks. With
imperfect information, however, as in Bayesian updating, people's best estimates (in this case of
others) will tend to fall between actual values and their prior expectations. Table 4 depicts
Overconfidence and Underconfidence 36
reasonable estimates. In keeping with the idea that estimates of self are less regressive than
estimates of others, suppose that estimates of others are computed using a somewhat arbitrary
equal weighting of the prior and actual score: (prior + actual)/2. Since the average expected
score is 50, assume that priors of all people's scores by all others = 50. So, for example, if A
scores 90, A will predict that B scores (90 + 50)/2 = 70.
Table 4
(Row A, Col B) = B's prediction of A's score
A 90
Target B 57.5
C 45
Next we calculate S and O for the group:
S = (A's estimate of self + B's estimate of self + C's estimate of self)/3
= (90 + 65 + 40)/3
= 65
O = [A's (average) estimate of others + B's (average) estimate of others + C's (average) estimate
of others]/3
= [½ (57.5 + 45) + ½ (70 + 45) + ½ (70 + 57.5)]/3
= [51.25 + 57.5 + 63.75]/3
= 57.5
Overconfidence and Underconfidence 37
Result: S (65) > O (57.5). On average, relying on sensible rules of inference, but using
systematically imperfect information (and which is known to be imperfect), people believe that
they (S) are better than others (O).
Note that C actually does (40) worse than expected (50) and everyone knows it [but C
knows it best; as shown in the preceding table, where (C, C) = 40, while (C, A) = 45, and (C, B)
= 45]. Nevertheless, on average, the group thinks it did better than expected (actual = 65 =
estimated > expected = 50). Our theory holds that, when this occurs, people will (on average)
think they did better than average. The SO calculation bears this out: SO = 7.5 > 0.
The logic outlined above works just the same if each person's estimate of his or her own
score is also imperfect and known to be imperfect, and therefore it also regresses toward the
prior. The only key requirement is that estimates of others be more regressive than estimates of
self, and Rule O holds.
Overconfidence and Underconfidence 38
Appendix B: Trivia Quizzes (four Simple, four Difficult), Experiment 1
Simple Test 1
1. Who was the first president of the United States?
2. How many inches are there in a foot?
3. What does MTV stand for?
4. On what continent is the country of Egypt?
5. What is the most widely spoken language in the US, after English?
Tiebreaker: What is the height of the Eiffel Tower (in feet)?
Simple Test 2
1. What was the first name of the Carnegie who founded the Carnegie Institute of
2. How many states are there in the United States?
3. In which month is Thanksgiving celebrated in the United States?
4. Harrisburg is the capital of what US state?
5. On what continent is the country of France located?
Tiebreaker: How many films did Alfred Hitchcock direct?
Simple Test 3
1. Which American civil rights leader gave a famous speech in which he repeated the lines,
"I have a dream…"
2. What American director was behind the movies, A.I., E.T., Minority Report, Saving
Private Ryan, and Jurassic Park?
3. What is the name of Pittsburgh's professional hockey team?
4. What Pennsylvania city is know for being at the confluence of the Allegheny and
Monongahela Rivers?
5. What country lies directly north of the United States?
Tiebreaker: How many member states are there in the United Nations?
Simple Test 4
1. What American became the first person to ever win the Tour de France 6 times?
2. Paris is the capital of what country?
3. In what large US city is the famous Times Square located?
4. Where in the human body is the cerebellum located?
5. What famous act of military aggression by Japan happened on Dec 7, 1941 that brought
the United States into World War II?
Tiebreaker: How many men signed the Declaration of Independence?
Overconfidence and Underconfidence 39
Difficult Test 1
1. In what European city would you find the famous Tivoli Gardens?
2. Truth or Consequences is a city in what U.S. state?
3. What company's research and development lab was once known as the "House of
4. What is the largest moon of Saturn?
5. What African country lies directly south of Egypt?
Tiebreaker: In the 2000 U.S. Census, what was the population of Walla Walla, Washington?
Difficult Test 2
1. Thomas Hooker is associated with the founding of which of the thirteen American
2. Who is the only U.S. president to have served two non-consecutive terms in office?
3. In Quentin Tarrantino's Reservoir Dogs, what is the alias of the man who is revealed to
be an undercover police officer?
4. In The Odyssey, who was the son of Ulysses (Odysseus)?
5. Who was voted Time magazine's Man of the Year in 1938?
Tiebreaker: What is the land area of Morocco (in square kilometers)?
Difficult Test 3
1. Blues musician Huddie Ledbetter is better known by what name?
2. What make and model of car holds the record for being the most widely produced car in
the world?
3. Laudanum is a form of what drug?
4. Who was the president of Indonesia, as of August 2002?
5. What is the capital of Nepal?
Tiebreaker: Approximately how many pieces of art did Pablo Picasso create during his lifetime?
Difficult Test 4
1. Which team won the first NBA Draft Lottery?
2. The Nobel Prizes are awarded in what two cities?
3. Dr. Faustus is best known for selling what item?
4. What two South American countries are land-locked?
5. Pro football announcer John Madden coached which team to a Super Bowl victory?
Tiebreaker: How many consecutive weeks did the Pink Floyd album Dark Side of the Moon
spend on the billboard music charts?
Overconfidence and Underconfidence 40
Appendix C
Trivia questions used in the simple and difficult trivia quizzes (Experiment 2).
Simple Difficult
1.How many inches are there in a foot? Which creature has the largest eyes in the world?
2.What is the name of Pittsburgh's professional
hockey team? How many verses are there in the Greek national anthem?
3.Which species of whale grows the largest? What company produced the first color television sold to
the public?
4.Who is the president of the United States? How many bathrooms are there in the White House (the
residence of the U.S. President)?
5.Harrisburg is the capital of what U.S. state? Which monarch ruled Great Britain the longest?
6.What was the first name of the Carnegie who
founded the Carnegie Institute of Technology? The word "planet" comes from the Greek word meaning
7.How many states are there in the United States? What is the name of the traditional currency of Italy
(before the Euro)?
8.What continent is Afghanistan in? What is Avogadro's number?
9.What country occupies an entire continent? Who played Dorothy in "The Wizard of Oz"?
10.Paris is the capital of what country? Who wrote the musical "The Yeoman of the Guard"?
Tiebreaker question: How many people live in Pennsylvania?
Answers—Simple: (1) 12 (2) Penguins (3) Blue (4) George W. Bush (5) Pennsylvania (6) Andrew (7) 50 (8) Asia (9) Australia
(10) France. Difficult: (1) Giant squid (2) 158 (3) RCA (4) 32 (5) Queen Victoria (6) wanderer (7) Lira (8) 6.02 X 1023 (9) Judy
Garland (10) Gilbert & Sullivan. Tiebreaker: 12,281,054.
Overconfidence and Underconfidence 41
Alicke, M. D., Klotz, M. L., Breitenbecher, D. L., Yurak, T. J., & Vredenburg, D. S. (1995).
Personal contact, individuation, and the better-than-average effect. Journal of Personality
and Social Psychology, 68(5), 804-825.
Baron, J. (1997). Confusion of relative and absolute risk in valuation. Journal of Risk and
Uncertainty, 14, 301-309.
Biernat, M., Manis, M., & Kobrynowicz, D. (1997). Simultaneous assimilation and contrast
effects in judgments of self and others. Journal of Personality and Social Psychology,
73(2), 254-269.
Burson, K. A., & Klayman, J. (2005). Judgments of performance: The relative, the absolute, and
the in-between. Ann Arbor: Unpublished manuscript.
Burson, K. A., Larrick, R. P., & Klayman, J. (2006). Skilled or unskilled, but still unaware of it:
How perceptions of difficulty drive miscalibration in relative comparisons. Journal of
Personality and Social Psychology, 90(1), 60-77.
Camerer, C. F., & Lovallo, D. (1999). Overconfidence and excess entry: An experimental
approach. American Economic Review, 89(1), 306-318.
Chambers, J. R., & Windschitl, P. D. (2004). Biases in social comparative judgments: The role
of nonmotivational factors in above-average and comparative-optimism effects.
Psychological Bulletin, 130(5).
College Board. (1976-1977). Student descriptive questionnaire. Princeton, NJ: Educational
Testing Service.
Cooper, A. C., Woo, C. Y., & Dunkelberg, W. C. (1988). Entrepreneurs' perceived chances for
success. Journal of Business Venturing, 3(2), 97-109.
Overconfidence and Underconfidence 42
Dunne, T., Roberts, M. J., & Samuelson, L. (1988). Patterns of firm entry and exit in U.S.
manufacturing industries. Rand Journal of Economics, 19(4), 495-515.
Dunning, D., Heath, C., & Suls, J. M. (2004). Flawed self-assessment: Implications for health,
education, and business. Psychological Science in the Public Interest, 5(3), 69-106.
Dunning, D., Meyerowitz, J. A., & Holzberg, A. D. (1989). Ambiguity and self-evaluation: The
role of idiosyncratic trait definitions in self-serving assessments of ability. Journal of
Personality and Social Psychology, 57(6), 1082-1090.
Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous over- and underconfidence:
The role of error in judgment processes. Psychological Review, 101(3), 519-527.
Fischhoff, B., & Bruine De Bruin, W. (1999). Fifty-fifty = 50%? Journal of Behavioral Decision
Making, 12(2), 149-163.
Fox, C. R., & Rottenstreich, Y. (2003). Partition priming in judgment under uncertainty.
Psychological Science, 14(3), 195-200.
Geroski, P. A. (1996). What do we know about entry? International Journal of Industrial
Organization, 13(4), 421-441.
Greico, D., & Hogarth, R. M. (2004). Excess entry, ambiguity seeking, and competence: An
experimental investigation. Unpublished manuscript.
Harris, P. (1996). Sufficient grounds for optimism? The relationship between perceived
controllability and optimistic bias. Journal of Social and Clinical Psychology, 15(1), 9-
Hayward, M. L. A., & Hambrick, D. C. (1997). Explaining the premiums paid for large
acquisitions: Evidence of CEO hubris. Administrative Science Quarterly, 42, 103-127.
Hoelzl, E., & Rustichini, A. (2005). Overconfident: Do you put your money on it? Economic
Journal, 115(503), 305-318.
Overconfidence and Underconfidence 43
Hoorens, V., & Buunk, B. P. (1993). Social comparison of health risks: Locus of control, the
person-positivity bias, and unrealistic optimism. Journal of Applied Social Psychology,
23(4), 291-302.
Juslin, P., Winman, A., & Olsson, H. (2000). Naive empiricism and dogmatism in confidence
research: A critical examination of the hard-easy effect. Psychological Review, 107(2),
Klar, Y. (2002). Way beyond compare: Nonselective superiority and inferiority biases in judging
randomly assigned group members relative to their peers. Journal of Experimental Social
Psychology, 38(4), 331-351.
Klar, Y., & Giladi, E. E. (1997). No one in my group can be below the group's average: A robust
positivity bias in favor of anonymous peers. Journal of Personality and Social
Psychology, 73(5), 885-901.
Klar, Y., & Giladi, E. E. (1999). Are most people happier than their peers, or are they just
happy? Personality and Social Psychology Bulletin, 25(5), 585-594.
Klar, Y., Medding, A., & Sarel, D. (1996). Nonunique invulnerability: Singular versus
distributional probabilities and unrealistic optimism in comparative risk judgments.
Organizational Behavior and Human Decision Processes, 67(2), 229-245.
Klein, W. M. P., & Kunda, Z. (1994). Exaggerated self-assessments and the preference for
controllable risks. Organizational Behavior and Human Decision Processes, 59(3), 410-
Klein, W. M. P., & Weinstein, N. D. (1997). Social comparison and unrealistic optimism about
personal risk. In B. P. Buunk & F. X. Gibbons (Eds.), Health, coping, and well-being:
Perspectives from social comparison theory (pp. 25-61; , 1997 ix, 1450).
Overconfidence and Underconfidence 44
Kruger, J. (1999). Lake Wobegon be gone! The "below-average effect" and the egocentric nature
of comparative ability judgments. Journal of Personality and Social Psychology, 77(2),
Kruger, J., & Burrus, J. (2004). Egocentrism and focalism in unrealistic optimism (and
pessimism). Journal of Experimental Social Psychology, 40(3), 332-340.
Kruger, J., Windschitl, P. D., Burrus, J., Fessel, F., & Chambers, J. R. (2006). The rational side
of egocentrism in social comparisons. Unpublished manuscript.
Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108(3), 480-498.
Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration of probabilities: The state of
the art in 1980. In D. Kahneman, P. Slovic & A. Tversky (Eds.), Judgment under
uncertainty: Heuristics and biases (pp. 306-333). Cambridge, England: Cambridge
University Press.
Malmendier, U., & Tate, G. (2004). CEO overconfidence and corporate investment. Cambridge,
Mata, J., & Portugal, P. (1994). Life duration of new firms. Journal of Industrial Economics,
42(3), 227-246.
Moore, D. A. (2004). Myopic prediction, self-destructive secrecy, and the unexpected benefits of
revealing final deadlines in negotiation. Organizational Behavior and Human Decision
Processes, 94(2), 125-139.
Moore, D. A. (2005). When good = better than average. Pittsburgh: Tepper Working Paper
Moore, D. A., & Kim, T. G. (2003). Myopic social prediction and the solo comparison effect.
Journal of Personality and Social Psychology, 85(6), 1121-1135.
Overconfidence and Underconfidence 45
Moore, D. A., Oesch, J. M., & Zietsma, C. (in press). What competition? Myopic self-focus in
market entry decisions. Organization Science.
Myers, D. G. (1998). Social psychology (5th ed.). New York: McGraw-Hill.
Odean, T. (1998). Volume, volatility, price, and profit when all traders are above average.
Journal of Finance, 53(6), 1887-1934.
Perloff, L. S., & Fetzer, B. K. (1986). Self-other judgments and perceived vulnerability to
victimization. Journal of Personality and Social Psychology, 50(3), 502-510.
Price, P. C. (2001). A group size effect on personal risk judgments. Memory and Cognition, 29,
Radzevick, J. R., & Moore, D. A. (2006). For the love of the game? Betting, prediction, and
myopic bias in athletic competition. Pittsburgh: Tepper Working Paper 2005-E7.
Rose, J. P., & Windschitl, P. D. (2006). How egocentric optimism change in response to
feedback in repeated competitions. Unpublished manuscript.
Suls, J. M., Lemos, K., & Stewart, H. L. (2002). Self-esteem, construal, and comparisons with
the self, friends, and peers. Journal of Personality and Social Psychology, 82(2), 252-
Svenson, O. (1981). Are we less risky and more skillful than our fellow drivers? Acta
Psychologica, 47, 143-151.
U.S. Small Business Administration. (2003). Longitudinal Establishment and Enterprise
Microdata. Washington, DC: Office of Advocacy (202-205-6530).
Weinstein, N. D. (1980). Unrealistic optimism about future life events. Journal of Personality
and Social Psychology, 39(5), 806-820.
Overconfidence and Underconfidence 46
Windschitl, P. D., Kruger, J., & Simms, E. (2003). The influence of egocentrism and focalism on
people's optimism in competitions: When what affects us equally affects me more.
Journal of Personality and Social Psychology, 85(3), 389-408.
Zajac, E. J., & Bazerman, M. H. (1991). Blind spots in industry and competitor analysis:
Implications of interfirm (mis)perceptions for strategic decisions. Academy of
Management Review, 16(1), 37-56.
... In their experiments, disregarding market size and the potential number of competitors, together with exaggerated absolute skill beliefs, were responsible for too many market entries in skill-based games. Contradicting Bolger et al. (2008), Moore and Cain's (2007) results suggest that on the average, market entries are based on overplacement. Combining the psychology and entrepreneurship literature, Cain et al. (2015) showed that people choose markets considered easy-to-enter. ...
... Supposing that nascent entrepreneurs' perceived entrepreneurial skills are inflated is in line with theories and the vast majority of empirical studies. Still, there is a debate on the relative or absolute nature of overconfidence at market entry (Bolger et al. 2008;Moore and Cain 2007). On the one hand, the results and argumentation of Cain et al. (2015) seem reasonable. ...
... One may think that as entrepreneurs usually select easyto-enter markets, they feel the task of starting a venture relatively easy and overplace themselves. On the other hand, the participants of Moore and Cain's (2007) experiments received immediate feedback about their peers. This protocol may prompt thinking about own skills relative to others. ...
Full-text available
In this article, we attempt to explain the failure of many studies to show a link between entrepreneurs’ beliefs in their entrepreneurial skills and the actual or expected growth of their venture. By using Frese and Gielnik’s action-characteristics model of entrepreneurship as an analytical framework and analyzing Global Entrepreneurship Monitor Adult Population Survey data, we show that entrepreneurs’ perceived entrepreneurial skills are consistently inflated over the different phases of the startup, albeit in different ways. Depending on the typical form of overconfidence, the link between skill beliefs and growth expectations may be mediated by expectations about competitive advantages. Moreover, the huge drop in growth expectations is not associated with a drop in perceived skills; instead other entrepreneurial expectations also become more realistic and their effect strengthens with experience.
... In the case of the art market, overoptimism and overprecision can emerge for a variety of reasons. For instance, inexperienced collectors may overestimate their ability to discover unknown artists who are destined to become famous, a distortion that can be seen as a form of self-attribution bias (Moore & Cain, 2007). In this case, overoptimism over quality takes the form of overestimating the probability that the artist is going to become a blue-chip artist soon and the artwork's resale potential. ...
Full-text available
This paper develops a Nash bargaining model of price formation in the art market. Agents can be naïve, if they are overconfident and either overestimate artistic quality or underestimate their uncertainty of artistic quality, or sophisticated, if they correctly use all the available information. Overconfidence turns out to have a positive impact on both the price and the average quality of the artworks traded in the market. The impact of overconfidence on expected quality is weaker than the corresponding price increase, so sellers overcharge buyers. In addition, the buyer’s (seller’s) overconfidence has a positive (negative) impact on the likelihood of trade. If many pairs of agents may bargain simultaneously, we find that seller’s market power is negatively affected by the number of sellers and positively affected by the number of buyers. If sophisticated and naïve buyers coexist, naïve buyers exert a negative externality on the sophisticated ones, increasing the price the latter pay.
... The PSM results provide evidence that matching on the propensity of a firm to have an overconfident CEO does not substantially affect the main results. Further, an individual's overconfidence depends partially on the type of task being performed (Moore and Cain 2007) as well as the individual's overconfidence. Thus, it is unlikely that hiring committees are able to identify whether a CEO candidate would be overconfident in the CEO position based on whether the individual exhibited overconfidence at his or her prior position (see Hsu et al. (2017) for further discussion). ...
Full-text available
This paper investigates the role of manager perception in proprietary disclosure decisions. I find robust evidence that firms with overconfident CEOs (managers who are more likely to perceive proprietary costs to be lower) provide significantly more narrative R&D disclosures than firms without overconfident CEOs. In cross-sectional analysis, I find that this result is driven by observations where proprietary costs are more significant and salient. Consistent with R&D disclosures being proprietary, I find that the return on R&D is significantly lower when firms have more R&D disclosure and that this relation is not impacted by the presence of an overconfident CEO except through higher R&D disclosure. Finally, I find no association between having an overconfident CEO and nonproprietary disclosure. Collectively, these results suggest that manager perception of proprietary costs is an important determinant of firms’ voluntary proprietary disclosure.
... Given that humans are notoriously bad at self-assessment, maintaining appropriate levels of confidence can be challenging if left entirely to the individual to resolve. [21][22][23]51,52 Rather than measuring confidence as an independent variable or construct, we can consider it as being linked to (but not as a surrogate for) competence. The interaction of confidence and competence in HPE has long been considered, [53][54][55][56][57][58] and individuals are viewed to be problematic when confidence and competence are decoupled. ...
Context There have been significant advances in competency-based medical education (CBME) within health professions education. While most of the efforts have focused on competency, less attention has been paid to the role of confidence as a factor in preparing for practice. This paper seeks to address this deficit by exploring the role of confidence and the calibration of confidence with regard to competence. Methods This paper presents a conceptual review of confidence and the calibration of confidence in different medical education contexts. Building from an initial literature review, the authors engaged in iterative discussions exploring divergent and convergent perspectives, which were then supplemented with targeted literature reviews. Finally, a stakeholder consultation was conducted to situate and validate the provisional findings. Results A series of axioms were developed to guide perceptions and responses to different states of confidence in health professionals: 1) confidence can shape how we act and is optimized when it closely corresponds to reality; 2) self-confidence is task-specific, but also inextricably influenced by the individual self-conceptualization, the surrounding system, and society; 3) confidence is shaped by many external factors and the context of the situation; 4) confidence must be considered in conjunction with competence; and 5) the confidence-competence ratio (CCR) changes over time. It is important to track learners’ CCRs and work with them to maintain balance. Conclusion Confidence is expressed in different ways and is shaped by a variety of modifiers. While CBME primarily focuses on competency, proportional confidence is an integral component in ensuring safe and professional practice. As such, it is important to consider both confidence and competence, as well as their relationship in CBME. The CCR can serve as a key construct in developing mindful and capable health professionals. Future research should evaluate strategies for assessing CCR, identify best practices for teaching confidence and guiding self-calibration of CCR, and explore the role of CCR in continuing professional development for individuals and teams.
... This indirectly confirms that overconfident investors trade more, which was also shown by Odean (1998). Another study found that individuals would not enter an experimental competition which included difficult tasks because they overestimated the performance of others, suggesting they were underconfident in their own abilities in comparison (Moore & Cain, 2007). Instances of underconfidence positively affecting outcomes are difficult to find. ...
Full-text available
Self-confidence has long been regarded as one of the key qualities in determining entrepreneurial success. In markets with uncertainty, like crowdfunding, entrepreneurial confidence is an important signal that lowers the information imbalance for potential investors. However, current literature on confidence is limited in three ways; first is the limited understanding of confidence in interpersonal interactions; second is the accurate measurement of confidence and thirdly, limited insight on whether an optimal level of confidence exists. We use two novel behavioral approaches to measure self and exhibited confidence and examine their relation to entrepreneurial success in reward-based crowdfunding. Derived from ex-ante information (i.e., before realization of success), our measurements for confidence allow us to draw causal inferences, allowing for contributions to confidence and displays of interpersonal emotion literature. By analyzing over 70,000 Kickstarter projects, we show an optimal level of entrepreneurial confidence exists in determining funding received, popularity, and likelihood of success.
... In terms of structural predictors, Moore and Cain (2007) show that the degree of difficulty of a task predicts whether people are over-or underconfident. The easier a task, the more likely people are to be overconfident relative to others. ...
Full-text available
This study investigates a source of comparative overconfidence, or overplacement, which occurs when people overestimate themselves relative to others. We present a simple application of information projection (Madarász, 2012) to show that hindsight bias can lead to overplacement and excessive willingness to compete. We run an experiment in which subjects choose between a competitive tournament and piece-rate compensation after observing some of their competitors' past performance. We exogenously manipulate whether subjects have ex post information about their competitors' past tasks (hindsight) or not (no hindsight). We find that hindsight bias generates overplacement and increases subjects' valuation of tournament participation by 19%. In line with theory, the additional tournament entry in the hindsight setting is driven by low-performing participants who should not have entered the tournament.
... An analysis of the literature reviewed shows that successful entrepreneurs tend to have proactive personalities, self-efficacy, tolerance for stress, and the need for autonomy and control (Brandstätter, 2011). Overconfidence is also commonly observed, with many entrepreneurs likely to overestimate their likelihood of success (Moore and Cain, 2007;Yang and Hahn, 2016). For complex technology, the "talent, experiences, and actions" of an entrepreneur are especially influential (Phan and Foo, 2004). ...
The evolution of innovative products has continued to move business and society into an ever more complex, and digital, world. Researchers have sought to understand how to best support innovation and how decisions are made regarding funding for entrepreneurs seeking to bring their products to market. Funding by investors can shape the direction of an innovation, especially for advances in information technology. The funding can be obtained from multiple sources, ranging from the more traditional angel and venture capitalists to newer, technology-enabled online structures such as crowd-sourced funding sites. This paper seeks to identify the factors that are important for information technology investment decisions, particularly considering the availability of newer funding methods. It starts by reviewing the literature on investment funding and decision making. Then a content analysis is performed, from which six dominant factors emerge: entrepreneur, product, market, proposal, management team, and financial considerations. Each of these factors has multiple dimensions, which are abstracted and categorized into a set of representative characteristics. Implications are provided for research and practice, and directions proposed for future work. Keywords: Information technology, entrepreneurship, technological investments, angel investor, funding, startup, entrepreneur, product, market, proposal, management team, financial, digital innovation, funding, crowd-sourced sites
Full-text available
Results of behavioral economics pose a strong challenge to mainstream finance theory conclusions. We discuss, theoretically and empirically, the connections of cognitive skills, biases and financial decisions using the Cognitive Reflection Test (Frederick, 2005). In particular, we have chosen overconfidence, risk aversion, bandwagon effect, time preference and money illusion, among the biases most discussed in the literature. The experiment we conducted confirmed a role of the cognitive skills in determining the decision mechanism of the investor although not neatly, especially for more complex biases, such as money illusion. Finally, we expose policy alternatives, focusing on the role of financial education to tackle cognitive biases in finance and monetary policy.
Full-text available
Under the backdrop of the pandemic of COVID-19, people have different predictions of the future condition and understanding of the current status. In this paper, findings from an online experiment show how overconfidence can play an important role in terms of decision-making of the pandemic: among the main findings from data analysis, self overconfidence significantly increases donations. Also, with the growth of age, people tend to donate more while as they advance the education level, people prefer to donate less. The results of this research can further inform policymakers on individuals’ behaviors during a negative economic shock.
The aim of this paper is to elucidate the relationship between managerial overconfidence/underconfidence and corporate social responsibility including the three ESG (environmental, social and governance) factors. Using an asymmetric nonstationary panel model, we detect the overconfidence (under confidence) component through positive (negative) overinvestment (underinvestment) changes. The Shin et al. (2014) nonlinear ARDL approach in panel form is used to construct our asymmetric panel ARDL-PMG model, and a sample of 68 large French companies over the period 2006-2016 is used. The asymmetric results first prove that a manager’s behavior seems to impact CSR only in the long term. Our asymmetric results also prove that CSR reacts positively to both managerial overconfidence and under-confidence shocks; Regardless of the personal traits of their manager, large companies have to be socially responsible. We then focus on the relationship between these two behavioral biases on each CSR dimension. We find a significant and negative impact of under confident leaders on the environmental dimension but a nonsignificant impact of overconfident leaders. For the governance dimension, we detect a positive effect of managerial overconfidence and managerial under confidence. However, we find a negative impact of overconfident and under confident leaders on the social dimension of CSR. According to these asymmetric findings, recommendations have been given in terms of the CSR strategy.
Full-text available
Most people judge themselves to be content with their lives. However, they also judge themselves to be more content than the others in their group, which is a logical impossibility. In line with previous speculations, the authors found in two studies that comparative contentment judgments were highly related to judgments of one’s own contentment but entirely unrelated to judgments of comparison of others’ contentment. That is, comparative contentment judgments are predominantly self-focused. Researchers asking the question, “How content are you relative to your peers?” should be aware that the response might well be to the question “How content are you?”
Full-text available
Can almost all members of a group be judged as better (or worse) than the other people in the same group? Apparently yes. In Studies 1–4, members of small intact groups systematically judged their group members as above the group average and above the median on a variety of social traits, even when all group members were judged consecutively. In Studies 5–7, participants judged members of a given positive group as systematically better than the others in the same positive group and members of a given negative group—as worse than the others in the same negative group. This was found in judgments of groups of liked and disliked acquaintances, attractive and unattractive faces, and high- and low-skilled students. The Singular-Target-Focus theory, arguing failure of contrast in member-to-group comparisons, is presented to account for these findings.
Several recent surveys have asked respondents to estimate the probabilities of relatively unlikely events, such as dying from breast cancer and smoking. Examination of their response distributions reveals a seemingly inappropriate blip at 50. The two studies reported here indicate that it reflects a response artifact associated with open-ended probability scales. The blip vanishes when a response scale with explicit response options is offered. Apparently, the open-ended format leads some people to use the 50% option as fifty-fifty, an expression of having no idea as to the answer. As a result, the accuracy of peoples reported beliefs depends on the response scale used, as well as on how it evokes and channels such feelings of epistemic uncertainty.
This article bridges the literatures on competitor analysis and strategic decision making by (1) introducing the notion of competitive decision making into the strategic decision-making literature and (2) embedding this notion into a framework of industry and competitor analysis. The article shows that decision makers typically have specific "blind spots" when they consider the contingent decisions of competitors. The article identifies these blind spots and discusses how they may explain persistent, commonly observed phenomena such as industry overcapacity, new business entry failures, and acquisition premiums.
Evidence that perceived controllability is associated with optimistic bias is reviewed. There is sufficient evidence that people are optimistically biased about negative events they perceive to be controllable. More work is needed to establish whether this is also true of positive events. There is evidence also that people often hold beliefs of their personal superiority on control-related dimensions. More experimental studies testing hypotheses about the mechanisms linking perceived control and optimistic bias are required. Future work should also expand the sophistication with which control is treated conceptually and empirically and the range of potential mechanisms examined.
Research from numerous corners of psychological inquiry suggests that self-assessments of skill and character are often flawed in substantive and systematic ways. We review empirical findings on the imperfect nature of self-assessment and discuss implications for three real-world domains: health, education, and the workplace. In general, people's self-views hold only a tenuous to modest relationship with their actual behavior and performance. The correlation between self-ratings of skill and actual performance in many domains is moderate to meager—indeed, at times, other people's predictions of a person's outcomes prove more accurate than that person's self-predictions. In addition, people overrate themselves. On average, people say that they are “above average” in skill (a conclusion that defies statistical possibility), overestimate the likelihood that they will engage in desirable behaviors and achieve favorable outcomes, furnish overly optimistic estimates of when they will complete future projects, and reach judgments with too much confidence. Several psychological processes conspire to produce flawed self-assessments. Research focusing on health echoes these findings. People are unrealistically optimistic about their own health risks compared with those of other people. They also overestimate how distinctive their opinions and preferences (e.g., discomfort with alcohol) are among their peers—a misperception that can have a deleterious impact on their health. Unable to anticipate how they would respond to emotion-laden situations, they mispredict the preferences of patients when asked to step in and make treatment decisions for them. Guided by mistaken but seemingly plausible theories of health and disease, people misdiagnose themselves—a phenomenon that can have severe consequences for their health and longevity. Similarly, research in education finds that students' assessments of their performance tend to agree only moderately with those of their teachers and mentors. Students seem largely unable to assess how well or poorly they have comprehended material they have just read. They also tend to be overconfident in newly learned skills, at times because the common educational practice of massed training appears to promote rapid acquisition of skill—as well as self-confidence—but not necessarily the retention of skill. Several interventions, however, can be introduced to prompt students to evaluate their skill and learning more accurately. In the workplace, flawed self-assessments arise all the way up the corporate ladder. Employees tend to overestimate their skill, making it difficult to give meaningful feedback. CEOs also display overconfidence in their judgments, particularly when stepping into new markets or novel projects—for example, proposing acquisitions that hurt, rather then help, the price of their company's stock. We discuss several interventions aimed at circumventing the consequences of such flawed assessments; these include training people to routinely make cognitive repairs correcting for biased self-assessments and requiring people to justify their decisions in front of their peers. The act of self-assessment is an intrinsically difficult task, and we enumerate several obstacles that prevent people from reaching truthful self-impressions. We also propose that researchers and practitioners should recognize self-assessment as a coherent and unified area of study spanning many subdisciplines of psychology and beyond. Finally, we suggest that policymakers and other people who makes real-world assessments should be wary of self-assessments of skill, expertise, and knowledge, and should consider ways of repairing self-assessments that may be flawed.
Previous studies have shown that people who have not been victimized by negative life events tend to perceive themselves as less vulnerable than others to victimization. The present 2 studies examined the conditions under which Ss' judgments of others' vulnerability would differ from judgments of their own vulnerability. In Study 1, 101 undergraduates saw vague comparison targets (either the average person or the average college student) as more vulnerable than themselves to 10 negative events. In contrast, Ss perceived a specific target (their closest friend, sibling, or same-sex parent) as equally invulnerable as themselves. In Study 2, 190 Ss who were instructed to consider a vague, abstract target (either the average college student or one of their friends) made downward comparisons, choosing a real or hypothetical other who was especially vulnerable to a particular event. Ss who were instructed to consider a specific, concrete target (their closest friend) perceived no self–other differences in risk status. It is concluded that when given the opportunity, Ss actively engage in downward comparisons, thereby seeing themselves as relatively invulnerable. Whereas vague targets facilitate downward comparisons, specific targets make such comparisons more difficult. Both cognitive and motivational mechanisms underlying such downward comparisons are discussed. (29 ref) (PsycINFO Database Record (c) 2012 APA, all rights reserved)