Identification of CD133−/Telomeraselow Progenitor Cells in Glioblastoma-Derived Cancer Stem Cell Lines

ArticleinCellular and Molecular Neurobiology 31(3):337-43 · November 2010with13 Reads
DOI: 10.1007/s10571-010-9627-4 · Source: PubMed
Glioblastoma multiforme (GBM) is paradigmatic for the investigation of cancer stem cells (CSC) in solid tumors. The CSC hypothesis implies that tumors are maintained by a rare subpopulation of CSC that gives rise to rapidly proliferating progenitor cells. Although the presence of progenitor cells is crucial for the CSC hypothesis, progenitor cells derived from GBM CSC are yet uncharacterized. We analyzed human CD133(+) CSC lines that were directly derived from CD133(+) primary astrocytic GBM. In these CSC lines, CD133(+)/telomerase(high) CSC give rise to non-tumorigenic, CD133(-)/telomerase(low) progenitor cells. The proliferation of the progenitor cell population results in significant telomere shortening as compared to the CD133(+) compartment comprising CSC. The average difference in telomere length as determined by a modified multi-color flow fluorescent in situ hybridization was 320 bp corresponding to 4-8 cell divisions. Taken together, we demonstrate that CD133(+) primary astrocytic GBM comprise proliferating, CD133(-)/telomerase(low) progenitor cell population characterized by low telomerase activity and shortened telomeres as compared to CSC.
    • "Human primary GBM cells R8 (CD133 -), R18 and R28 (CD133 + ) were kindly provided by Dr. Dagmar Beier (Department of Neurology, University Aachen, RWTH, Germany). The procedure of generation of primary GBM cells and histological classification were described by Beier et al [32, 42]. GBM cells were cultured in stem cell-permissive DMEM/F12 medium (PAN, Germany) supplemented with human recombinant epidermal growth factor, human recombinant basic fibroblast growth factor (both PeproTech, Rocky Hill, New Jersey, USA) and human leukemia inhibitory factor (Active Bioscence, Germany), 20 ng/mL of each, and 2% B27 (Gibco, Life Technologies, Carlsbad, California, USA) in non-tissue treated plates. "
    [Show abstract] [Hide abstract] ABSTRACT: The existence of therapy resistant glioma stem cells is responsible for the high recurrence rate and incurability of glioblastomas. The Hedgehog pathway activity plays an essential role for self-renewal capacity and survival of glioma stem cells. We examined the potential of the Sonic hedgehog ligand for sensitizing of glioma stem cells to endogenous nano-irradiation. We demonstrate that the Sonic hedgehog ligand preferentially and efficiently activated glioma stem cells to enter the radiation sensitive G2/M phase. Concomitant inhibition of de novo thymidine synthesis with fluorodeoxyuridine and treatment with the Auger electron emitting thymidine analogue 5-[I-125]-Iodo-4’-thio-2’-deoxyuridine ([I-125]ITdU) leads to a fatal nanoirradiation in sensitized glioma stem cells. Targeting of proliferating glioma stem cells with DNA-incorporated [I-125]ITdU efficiently invokes the intrinsic apoptotic pathway despite active DNA repair mechanisms. Further, [I-125]ITdU completely inhibits survival of glioma stem cells in vitro. Analysis of non-stem glioblastoma cells and normal human astrocytes reveals that glioma stem cells differentially respond to Sonic hedgehog ligand. These data demonstrate a highly efficient and controllable single-cell kill therapeutic model for targeting glioma stem cells.
    Full-text · Article · Jun 2014
    • "The CSC theory presumes that the tumor carcinogenesis, recurrence, and resistance are caused by the existence of a small subpopulation of CSCs. Recent studies are mainly involved in characterizing CSCs from different tumor cell lines or solid tumor tissues including glioblastoma, melanoma, breast cancer, lung cancer, etc., and their crucial signal molecules5678. CSCs can be enriched or identified using cell surface markers via flow cytometry and immunomagnetic beads sorting system [9,10], or sphere-forming assay [4,11] in selective serum-free medium. "
    [Show abstract] [Hide abstract] ABSTRACT: A subpopulation of cancer stem cells is recognized as the cause of tumorigenesis and spreading. To investigate the effects of casticin (5,3′-dihydroxy-3,6,7,4′-tetramethoxyflavone), derived from Fructus Viticis Simplicifoliae, on lung cancer stem cells, we isolated and identified a subpopulation of lung cancer stem-like cells (LCSLCs) from non-small-cell lung carcinoma A549 cells with the features including self-renewal capacity and high invasiveness in vitro, elevated tumorigenic activity in vivo, and high expression of stemness markers CD133, CD44, and aldehyde dehydrogenase 1 (ALDH1), using serum-free suspension sphere-forming culture method. We then found that casticin could suppress the proliferation of LCSLCs in a concentration-dependent manner with an IC50 value of 0.4 μmol/L, being much stronger than that in parental A549 cells. In addition, casticin could suppress the self-renewal and invasion of LCSLCs concomitant with decreased CD133, CD44, and ALDH1 protein expression and reduced MMP-9 activity. Further experiments showed that casticin suppressed self-renewal and invasion at least partly through down-regulation of Akt phosphorylation. In conclusion, casticin suppressed the characteristics of LCSLCs, suggesting that casticin may be a candidate compound for curing lung cancer via eliminating cancer stem cells.
    Article · Nov 2013
    • "There is general consensus that CD133 + /telomerase High CSC gives rise to CD133 -/telomerase Low progenitor cells. It is the proliferation of these progenitor cells that populate and makes up the tumor mass (Beier et al., 2011). Moreover, it has been shown that differentiated tumor cells are more susceptible to chemotherapy and radiation treatment, and are eliminated from the tumor mass. "
    Full-text · Chapter · Sep 2011 · Acta Biochimica et Biophysica Sinica
Show more