ArticlePDF Available

Zn Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture

Authors:

Abstract and Figures

Increasing the intracellular Zn(2+) concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn(2+) and PT at low concentrations (2 µM Zn(2+) and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV--thus eliminating the need for PT to transport Zn(2+) across the plasma membrane--we show that Zn(2+) efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn(2+) directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn(2+) was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn(2+) with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.
Content may be subject to copyright.
A preview of the PDF is not available
... Antiviral effect of zinc have been demonstrated in vivo and in vitro in several viruses, including corona viruses, picornaviruses, papilloma viruses, metapneumoviruses, rhinoviruses, herpes simplex viruses, varicella-zoster viruses, respiratory syncytial viruses, retroviruses, SARS-CoV and SARS-CoV-2 etc. (Bracha and Schlesinger, 1976;Gupta and Rapp, 1976;Polatnick and Bachrach, 1978;Katz and Margalith, 1981;Kümel et al., 1990;Hulisz, 2004;Krenn et al., 2009;Te Velthuis et al., 2010;Liu and Kielian, 2012;Wei et al., 2012;Antoine et al., 2016;Liu et al., 2021;Samad et al., 2021). Based on the available literature, mechanism underlying the antiviral properties of zinc may be broadly classified into two categories: (a) direct inhibitory effect on the different stages of the life cycle of the virus and (b) indirect effect of zinc attributed to its ability to modulate various host cellular processes and immune response. ...
... RNA dependent RNA polymerase (RdRp) produced by proteolytic processing of the viral nonstructural proteins plays the central role in the viral replication process. Zinc inhibits RdRp activity of many viruses, including TGEV (Transmissible gastroenteritis virus), SARS-CoV (Severe acute respiratory syndrome coronavirus), EAV (Equine arteritis virus), Rhinovirus and HEV (Hepatitis E virus; Korant et al., 1974;Hung et al., 2002;Te Velthuis et al., 2010;Wei et al., 2012;Kaushik et al., 2017). Different steps in the replication process have been shown to be targeted by zinc for inhibiting RdRp activity. ...
... Different steps in the replication process have been shown to be targeted by zinc for inhibiting RdRp activity. In case of SARS-CoV, zinc treatment reduced template binding and elongation by the RdRp whereas in case of EAV, initiation step of RNA synthesis was inhibited (Te Velthuis et al., 2010). Zinc also inhibits Rhinovirus RdRp activity in vitro although the mechanism remains to be understood (Korant et al., 1974;Hung et al., 2002). ...
Article
Full-text available
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
... This resultant de ciency in Retinoic acid induced by infection could potentially hinder the lung's capability to restore impaired epithelial surfaces, conceivably contributing to pulmonary brosis and subsequent lung capacity reduction51 . Zinc ions serve to inhibit coronavirus RNA polymerase activity, effectively thwarting virus replication52 . A meta-analysis unveiled that zinc supplementation substantially impacted the reduction of mortality in COVID-19 patients 53 . ...
Preprint
Full-text available
Background The emergence of severe coronavirus disease 2019 (COVID-19) and its ensuing complications presents a substantial challenge to human safety. Osteoarthritis (OA) stands as the most common degenerative joint disease, while the intricate molecular relationship between OA and COVID-19 remains enigmatic. In this investigation, we employed systematic bioinformatics analysis to uncover the underlying molecular mechanisms associated with these two diseases. Additionally, we identified potential therapeutic drugs with the potential to aid in the treatment of patients afflicted with both COVID-19 infection and osteoarthritis (OA). Methods Datasets for both COVID-19 and OA were sourced from the GEO database. Subsequently, a differential expression analysis was executed to procure Differentially Expressed Genes (DEGs). Co-expressed genes shared between OA and COVID-19 were identified through the intersection of differential gene sets, employing a Venn diagram. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Metascape. The hub genes were identified through protein-protein interaction (PPI) analysis carried out in Cytoscape, and their validity was subsequently affirmed through brief experiment. Finally, transcription factor-gene interactions, microRNA (miRNA) candidate identification and drug candidate identification were identified by co-expression of genes. Results A total of 94 co-expressed DEGs were obtained. GO and KEGG enrichment analysis of DEGs showed that they mainly affect inflammation, cytokine and immune-related functions, and inflammation-related signaling pathways. Through the analysis of the PPI network, we obtained 9 hub genes, and validated them with brief experiments. In addition, the top ten drug candidates ranked by P-value were screened, which may exhibit potential for providing therapeutic benefits in the context of treating individuals affected by both COVID-19 infection and OA. Conclusion This study reveals a shared molecular mechanism between osteoarthritis (OA) and neocoronary pneumonia. Additionally, it clarifies potential mechanisms linked to synovial lesions in both neocoronary pneumonia and osteoarthritis. These shared pathways and hub genes might offer insights for future investigations.
... Além de seu papel nas funções imunológicas, o zinco tem sido aplicado em atividade antiviral direta para uma série de RNA viral, sendo demonstrado que este micromineral inibe de forma eficiente a replicação de SARS-CoV em cultura celular, mostrando o papel crucial do zinco intracelular na inibição da replicação do vírus (Velthuis et al., 2010). ...
Article
Full-text available
O ovo de uma galinha contém substâncias promotoras da saúde e preventivas de doenças, tornando-o um alimento funcional, além de ser importante reserva de proteínas, lipídeos, vitaminas e minerais. Dessa forma, objetivou-se, com este trabalho, discutir a relação das propriedades nutritivas do ovo com o funcionamento do sistema imunológico. Dentre os principais nutrientes presentes no ovo que podem exercer função imunomoduladora, e contribuir com a atividade do sistema imunológico, em específico na prevenção e combate de doenças, podem-se citar as vitaminas lipossolúveis A, D e E, os microminerais: cobre (Cu), selênio (Se) e zinco (Zn), e os ácidos graxos da família ômega-3 (AGs ω-3). A partir da presença desses componentes nutricionais, o consumo do ovo irá contribuir na formação, desenvolvimento e funcionamento do sistema imunológico, em decorrência de sua composição nutricional poder auxiliar nas ações de defesa do organismo humano, e conseqüentemente na prevenção e combate de doenças. Nesse sentido, a ingestão dos nutrientes funcionais presentes no ovo, alimento de baixo custo e de fácil aquisição, irá proporcionar uma melhor saúde da população, a partir de uma maior realização de atividades biológicas, que possam propiciar uma estrutura corporal mais forte e resistente.
... Despite the interest in zinc sulfate as a prevention therapy, their findings do not support a prophylactic benefit in the absence of a zinc ionophore. To help answer this question, a zinc sulfate prophylactic strategy should be evaluated [35,[62][63][64][65]. ...
Article
Full-text available
Zinc deficiency makes us to realize the importance of zinc to human health becomes obvious. Even a mild zinc deficiency can impair hematopoietic and immune functions, leading to the destruction of pro-inflammatory phenotypes and redox metabolism. Although dysfunction of the immune system is the most obvious effect, zinc deficiency can destroy the function of many types of tissue cells. Decreased adhesion molecules and tight junction proteins and increased cell death lead to barrier dysfunction and possible organ failure. Zn deficiency, when combined, weakens the human body's resistance to pathogens while also increasing the risk of an overactive immune response that can cause tissue damage. The coronavirus disease (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This has prompted scientists all over the world to work on finding new treatments for COVID-19. Aside from a weakened immune system, zinc deficiency causes several metabolic changes. The role of zinc in inhibiting covid-19, as well as the negative effects of zinc deficiency, are discussed in this review.
Article
Full-text available
Wuhan, China reported a novel coronavirus-related sickness in late 2019, which quickly spread into a global epidemic. One crucial factor in combating the coronavirus infection appears to be the presence of a robust, long-lasting, and active immune system. The immune response is affected by several factors, including food. Nutritional insufficiency can cause immune deficits, making infections more likely to cause fatality. Thus, understanding numerous behaviors, particularly dietary habits, is essential to determining their capacity to reduce severe acute respiratory syndrome coronavirus 2 risks and improve prognosis. In this paper, the authors summarize the complex interaction between nutritional status and severe acute respiratory syndrome corona virus 2 infections, as well as the consequences of poor nutrients with regard of the extent to which disease is affected. The literature was compiled by searching a number of reputable scientific databases including Scopus, Science Direct, Springer, Nature, PubMed, Web of Science resources. The accumulating evidence demonstrates that malnutrition impairs the immune system's ability to function, weakening the body's infection resistance. This review emphasizes the significance of nutritional status in the care of coronavirus disease patients as well as demonstrates that functional foods may contribute to better outcomes. Ageing, Obesity, Malnutrition, Undernutrition, Lack of exercise are having a devastating effect on people's health in general and during this coronavirus disease. The severity and prognosis of coronavirus illness seem to be significantly influenced by lifestyle choices, nutritional imbalances, and impaired immune response.
Article
Full-text available
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein–DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Article
Full-text available
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro-and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium , zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Article
Full-text available
This review will provide an overview of the immune system and then describe the effects of frailty, obesity, specific micronutrients and the gut microbiota on immunity and susceptibility to infection including data from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic where relevant. A key role for the immune system is providing host defence against pathogens. Impaired immunity predisposes to infections and to more severe infections and weakens the response to vaccination. A range of nutrients, including many micronutrients, play important roles in supporting the immune system to function. The immune system can decline in later life and this is exaggerated by frailty. The immune system is also weakened with obesity, generalised undernutrition and micronutrient deficiencies, which all result in increased susceptibility to infection. Findings obtained during the SARS-CoV-2 pandemic support what was already known about the effects of ageing, frailty and obesity on immunity and susceptibility to infection. Observational studies conducted during the pandemic also support previous findings that multiple micronutrients including vitamins C, D and E, zinc and selenium and long-chain n -3 fatty acids are important for immune health, but whether these nutrients can be used to treat those already with coronavirus disease discovered in 2019 (COVID-19), particularly if already hospitalised, is uncertain from current inconsistent or scant evidence. There is gut dysbiosis in patients with COVID-19 and studies with probiotics report clinical improvements in such patients. There is an inverse association between adherence to a healthy diet and risk of SARS-CoV-2 infection and hospitalisation with COVID-19 which is consistent with the effects of individual nutrients and other dietary components. Addressing frailty, obesity and micronutrient insufficiency will be important to reduce the burden of future pandemics and nutritional considerations need to be a central part of the approach to preventing infections, optimising vaccine responses and promoting recovery from infection.
Article
Full-text available
A simple one-pot method is proposed for obtaining the colloidal nanohybrid structures of silver (gold) and zinc oxide as well as nanostructures doped with zinc ions. The copolymers of maleic acid were used for the stabilization of nanoheterostructures. To characterize the preparation, UV–Vis spectroscopy, TEM, FTIR, XPS, and XRD were used. The bactericidal properties of the nanoheterostructures were studied in relation to the fungus C. albicans and the bacteria E. coli and S. aureus, used in planktonic form. In general, the samples containing nanosilver were the most active, and the preparations containing gold nanoparticles were the least active. The minimum inhibitory concentrations (MICs) of the Ag/ZnO samples, based on all copolymers, were in the ranges of 1.4–1.7 μg/mL for C. albicans, 2.9–6.8 μg/mL for E. coli, and 23–27 μg/mL for S. aureus; the MIC values of Au/ZnO samples were 472 μg/mL for S. aureus and 945 μg/mL for C. albicans and E. coli. The additional introduction of zinc cations into heterodimers had practically no effect on the antimicrobial properties of the composites. For all prepared composites and all tested microorganisms, the fractional inhibitory concentration indexes were in the range of 0.5–2.2, which indicates a close-to-additive contribution of the bioactive components in the samples used in the bactericidal process.
Article
Full-text available
An RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit of the RNA-synthesizing machinery of all positive-strand RNA viruses. Usually, RdRp domains are readily identifiable by comparative sequence analysis, but biochemical confirmation and characterization can be hampered by intrinsic protein properties and technical complications. It is presumed that replication and transcription of the ∼30-kb severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) RNA genome are catalyzed by an RdRp domain in the C-terminal part of nonstructural protein 12 (nsp12), one of 16 replicase subunits. However, thus far full-length nsp12 has proven refractory to expression in bacterial systems, which has hindered both the biochemical characterization of coronavirus RNA synthesis and RdRp-targeted antiviral drug design. Here, we describe a combined strategy involving bacterial expression of an nsp12 fusion protein and its in vivo cleavage to generate and purify stable SARS-CoV nsp12 (106 kDa) with a natural N-terminus and C-terminal hexahistidine tag. This recombinant protein possesses robust in vitro RdRp activity, as well as a significant DNA-dependent activity that may facilitate future inhibitor studies. The SARS-CoV nsp12 is primer dependent on both homo- and heteropolymeric templates, supporting the likeliness of a close enzymatic collaboration with the intriguing RNA primase activity that was recently proposed for coronavirus nsp8.
Article
Full-text available
Metalloproteases cleave proteins and peptides, and deregulation of their function leads to pathology. An understanding of their structure and mechanisms of action is necessary to the development of strategies for their regulation. Among metallopeptidases are the metzincins, which are mostly multidomain proteins with ∼130–260-residue globular catalytic domains showing a common core architecture characterized by a long zinc-binding consensus motif, HEXXHXXGXX(H/D), and a methionine-containing Met-turn. Metzincins participate in unspecific protein degradation such as digestion of intake proteins and tissue development, maintenance, and remodeling, but they are also involved in highly specific cleavage events to activate or inactivate themselves or other (pro)enzymes and bioactive peptides. Metzincins are subdivided into families, and seven such families have been analyzed at the structural level: the astacins, ADAMs/adamalysins/reprolysins, serralysins, matrix metalloproteinases, snapalysins, leishmanolysins, and pappalysins. These families are reviewed from a structural point of view.
Article
Full-text available
Current therapy for chronic hepatitis C virus (HCV) infection is effective in less than 50% of genotype 1-infected patients. Antiviral agents specifically targeting either the HCV protease or polymerase, or other targets, are now in clinical development. In general, direct antivirals are potent inhibitors of HCV replication and can result in rapid declines in serum HCV RNA levels. Yet these agents drive selection pressure for mutant viruses that can reduce susceptibility to any given drug. Using pegylated interferon (PEG-IFN) and ribavirin (RBV) in combination with direct antivirals can suppress viral breakthrough and increase the likelihood of sustained virologic response. Direct antivirals also result in adverse events in a proportion of patients, adding to concerns of tolerability that exist with PEG-IFN and RBV. Direct antivirals are very likely to become an integral part of treatment within the next decade, and already their use in clinical trials has raised important issues related to duration of treatment, early stopping rules, retreatment of previously treated patients, and how or when direct antivirals should be combined. Here, we provide current information regarding the effectiveness of direct antivirals in treating chronic HCV infection and discuss the key questions and challenges now facing the field.
Article
Full-text available
The involvement of Zn(2+) ions in the structure of ubiquitous protein zinc fingers gives this metal a particular position in the biology of the cell. ...
Article
Inducible expression systems in which T7 RNA polymerase transcribes coding sequences cloned under control of a T7lac promoter efficiently produce a wide variety of proteins in Escherichia coli. Investigation of factors that affect stability, growth, and induction of T7 expression strains in shaking vessels led to the recognition that sporadic, unintended induction of expression in complex media, previously reported by others, is almost certainly caused by small amounts of lactose. Glucose prevents induction by lactose by well-studied mechanisms. Amino acids also inhibit induction by lactose during log-phase growth, and high rates of aeration inhibit induction at low lactose concentrations. These observations, and metabolic balancing of pH, allowed development of reliable non-inducing and auto-inducing media in which batch cultures grow to high densities. Expression strains grown to saturation in non-inducing media retain plasmid and remain fully viable for weeks in the refrigerator, making it easy to prepare many freezer stocks in parallel and use working stocks for an extended period. Auto-induction allows efficient screening of many clones in parallel for expression and solubility, as cultures have only to be inoculated and grown to saturation, and yields of target protein are typically several-fold higher than obtained by conventional IPTG induction. Auto-inducing media have been developed for labeling proteins with selenomethionine, 15N or 13C, and for production of target proteins by arabinose induction of T7 RNA polymerase from the pBAD promoter in BL21-AI. Selenomethionine labeling was equally efficient in the commonly used methionine auxotroph B834(DE3) (found to be metE) or the prototroph BL21(DE3).
Article
DNA and a large proportion of RNA are antiparallel duplexes composed of an unvarying phosphosugar backbone surrounding uniformly stacked and highly similar base pairs. How do the myriad of enzymes (including ribozymes) that perform catalysis on nucleic acids achieve exquisite structure or sequence specificity? In all DNA and RNA polymerases and many nucleases and transposases, two Mg2+ ions are jointly coordinated by the nucleic acid substrate and catalytic residues of the enzyme. Based on the exquisite sensitivity of Mg2+ ions to the ligand geometry and electrostatic environment, we propose that two-metal-ion catalysis greatly enhances substrate recognition and catalytic specificity.
Article
Several polypeptide products of MHV-A59 ORF 1a were characterized in MHV-A59 infected DBT cells, using antisera directed against fusionn roteins encoded in the first 6.5 kb of ORF1a. These included the previously identified N-terminal ORF 1a product, p28, as well as 290-, 240-, and 50-kDa polypeptides. P28 was always detected as a discrete band without larger precursors, suggesting rapid cleavage of p28 immediately after its synthesis. Once p28 was cleaved there was little degradation of the protein over a 2-hr period. The intracellular cleavage of p28 was not inhibited by the protease inhibitor leupeptin, in contrast to results obtained during in vitro translation of genome RNA (Denison and Perlman, 1986). These data suggest that different protease activities may be responsible for the cleavage of p28 in vitro and in vivo. The 290-kDa protein was an intermediate cleavage product derived from a precursor of greater than 400 kDa. The 290-kDa product was subsequently cleaved into secondary products of 50 and 240 kDa. The intracellular cleavage of the 290-kDa polypeptide was inhibited by leupeptin at concentrations which did not inhibit the early cleavage of p28 or the cleavage of the 290-kDa product from its larger polyprotein precursor. In the presence of zinc chloride, a product of >320 kDa was detected, which appears to incorporate p28 at its amino terminus. This suggests that at least two protease activities may be necessary for processing of ORF1a proteins, one of which cleaves p28 and is sensitive to zinc chloride but resistant to leupeptin, and the other which cleaves the 290-kDa precursor and is sensitive to both inhibitors. Both the 290- and 240-kDa proteins should contain sequences predicted to encode two papain-like protease activities.
Article
As health care providers, we find ourselves on the verge of a new era in the treatment of chronic hepatitis C virus (HCV) infection. A number of directly acting antiviral agents are now in the latter stages of clinical development. The more promising candidates include direct inhibitors of the HCV nonstructural 3 protease, as well as both nucleoside and non-nucleoside inhibitors of the NS5B RNA-dependent RNA polymerase. Although these agents have demonstrated potent antiviral effect, monotherapy has been complicated by rapid virological breakthrough due to the selection of drug-resistant mutants. As for HIV and HBV, combination therapy will therefore be necessary. This brief review summarizes the current literature concerning resistance and directly acting antiviral agents, and identifies key challenges facing this emerging field.
Article
Although coronaviruses were first identified nearly 60 years ago, they only received notoriety in 2003 when one of their members was identified as the aetiological agent of severe acute respiratory syndrome. Previously these viruses were known to be important agents of respiratory and enteric infections of domestic and companion animals and to cause approximately 15% of all cases of the common cold. This Review focuses on recent advances in our understanding of the mechanisms of coronavirus replication, interactions with the host immune response and disease pathogenesis. It also highlights the recent identification of numerous novel coronaviruses and the propensity of this virus family to cross species barriers.
Article
We have discovered two metal ion binding compounds, pyrithione (PT) and hinokitiol (HK), that efficiently inhibit human rhinovirus, coxsackievirus, and mengovirus multiplication. Early stages of virus infection are unaffected by these compounds. However, the cleavage of the cellular eukaryotic translation initiation factor eIF4GI by the rhinoviral 2A protease was abolished in the presence of PT and HK. We further show that these compounds inhibit picornavirus replication by interfering with proper processing of the viral polyprotein. In addition, we provide evidence that these structurally unrelated compounds lead to a rapid import of extracellular zinc ions into cells. Imported Zn2+ was found to be localized in punctate structures, as well as in mitochondria. The observed elevated level of zinc ions was reversible when the compounds were removed. As the antiviral activity of these compounds requires the continuous presence of the zinc ionophore PT, HK, or pyrrolidine-dithiocarbamate, the requirement for zinc ions for the antiviral activity is further substantiated. Therefore, an increase in intracellular zinc levels provides the basis for a new antipicornavirus mechanism.