Charting the Secretory Pathway in a Simple Eukaryote

ArticleinMolecular biology of the cell 21(22):3781-4 · November 2010with29 Reads
Impact Factor: 4.47 · DOI: 10.1091/mbc.E10-05-0416 · Source: PubMed


    George Palade, a founding father of cell biology and of the American Society for Cell Biology (ASCB), established the ultrastructural framework for an analysis of how proteins are secreted and membranes are assembled in eukaryotic cells. His vision inspired a generation of investigators to probe the molecular mechanisms of protein transport. My laboratory has dissected these pathways with complementary genetic and biochemical approaches. Peter Novick, one of my first graduate students, isolated secretion mutants of Saccharomyces cerevisiae, and through cytological analysis of single and double mutants and molecular cloning of the corresponding SEC genes, we established that yeast cells use a secretory pathway fundamentally conserved in all eukaryotes. A biochemical reaction that recapitulates the first half of the secretory pathway was used to characterize Sec proteins that comprise the polypeptide translocation channel in the endoplasmic reticulum (ER) membrane (Sec61) and the cytoplasmic coat protein complex (COPII) that captures cargo proteins into transport vesicles that bud from the ER.