Article

A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity

Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, Department of Microbiology and Immunology, University of California-San Francisco, California, USA.
Nature Immunology (Impact Factor: 20). 10/2010; 11(12):1085-92. DOI: 10.1038/ni.1955
Source: PubMed

ABSTRACT

To investigate the role of the kinase Zap70 in T cells, we generated mice expressing a Zap70 mutant whose catalytic activity can be selectively blocked by a small-molecule inhibitor. We found that conventional naive, effector and memory T cells were dependent on the kinase activity of Zap70 for their activation, which demonstrated a nonredundant role for Zap70 in signals induced by the T cell antigen receptor (TCR). In contrast, the catalytic activity of Zap70 was not required for activation of the GTPase Rap1 and inside-out signals that promote integrin adhesion. This Zap70 kinase-independent pathway was sufficient for the suppressive activity of regulatory T cells (T(reg) cells), which was unperturbed by inhibition of the catalytic activity of Zap70. Our results indicate Zap70 is a likely therapeutic target.

Download full-text

Full-text

Available from: Arthur Weiss, Jun 30, 2014
    • "In marked contrast, our patients had a distinct phenotype with early onset, severe to life-threatening autoimmune disease and only minor lymphocyte abnormalities and no evidence of immune deficiency (Table 1). In mice, defects in both central and peripheral tolerance have been associated with hypomorphic Zap-70 defects and autoimmune features (Siggs et al., 2007;Au-Yeung et al., 2010;Tanaka et al., 2010). In humans, ZAP70 deficiency can alter the thymic stromal compartment, reduce thymic T reg cell numbers, and develop an autoimmune-prone gene expression profile in CD4 T cells (Roifman et al., 2010;Poliani et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients' combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70-associated autoimmune disease.
    No preview · Article · Jan 2016 · Journal of Experimental Medicine
  • Source
    • "One possibility is the spatial segregation of TCR and Lck from phosphatases such as CD45 (Davis and Van Der Merwe, 2006; Rossy et al., 2012). Phosphorylated ITAMs serve as recruitment and activation sites for zeta chain-associated protein kinase of 70 kDa (ZAP-70), whose activity is essential in conventional T cells but not in regulatory T cells (Au-Yeung et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Engagement of the T cell antigen receptor (TCR) triggers signaling pathways that lead to T cell selection, differentiation and clonal expansion. Superimposed onto the biochemical network is a spatial organization that describes individual receptor molecules, dimers, oligomers and higher order structures. Here we discuss recent findings and new concepts that may regulate TCR organization in naïve and memory T cells. A key question that has emerged is how antigen-TCR interactions encode spatial information to direct T cell activation and differentiation. Single molecule super-resolution microscopy may become an important tool in decoding receptor organization at the molecular level.
    Full-text · Article · Nov 2012 · Frontiers in Immunology
  • Source
    • "Selective inhibition of Zap70 kinase activity in mice did not lead to defects in RapI activation or integrin-mediated cell adhesion, as was observed with Zap70 genetic deficiency (Au-Yeung et al., 2010). Likewise, knockdown of interleukin 1 receptor associated kinase 1 by small hairpin RNA induced cell death in a subset of non-Hodgkin's lymphoma cell lines, a phenotype that was completely rescued by expression of a kinase-dead mutant of this protein (Ngo et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on genetic studies that establish the role of spleen tyrosine kinase (Syk) in immune function, inhibitors of this kinase are being investigated as therapeutic agents for inflammatory diseases. Because genetic studies eliminate both adapter functions and kinase activity of Syk, it is difficult to delineate the effect of kinase inhibition alone as would be the goal with small-molecule kinase inhibitors. We tested the hypothesis that specific pharmacological inhibition of Syk activity retains the immunomodulatory potential of Syk genetic deficiency. We report here on the discovery of (4-(3-(2H-1,2,3-triazol-2-yl)phenylamino)-2-((1R,2S)-2-aminocyclohexylamino) pyrimidine-5-carboxamide acetate (P505-15), a highly specific and potent inhibitor of purified Syk (IC50 1-2 nM). In human whole blood, P505-15 potently inhibited B cell antigen receptor-mediated B cell signaling and activation (IC50 0.27 and 0.28 μM, respectively) and Fcε receptor 1-mediated basophil degranulation (IC50 0.15 μM). Similar levels of ex vivo inhibition were measured after dosing in mice (Syk signaling IC50 0.32 μM). Syk-independent signaling and activation were unaffected at much higher concentrations, demonstrating the specificity of kinase inhibition in cellular systems. Oral administration of P505-15 produced dose-dependent anti-inflammatory activity in two rodent models of rheumatoid arthritis. Statistically significant efficacy was observed at concentrations that specifically suppressed Syk activity by ∼67%. Thus specific Syk inhibition can mimic Syk genetic deficiency to modulate immune function, providing a therapeutic strategy in P505-15 for the treatment of human diseases.
    Full-text · Article · Feb 2012 · Journal of Pharmacology and Experimental Therapeutics
Show more