Acetaminophen inhibits status epilepticus in cultured hippocampal neurons

Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA.
Neuroreport (Impact Factor: 1.52). 10/2010; 22(1):15-8. DOI: 10.1097/WNR.0b013e3283413231
Source: PubMed


Status epilepticus (SE) is a major neurological disorder and SE survivors often develop acquired epilepsy and cognitive deficits. Thus, it is important to stop SE and limit brain damage. However, rapid pharmacoresistance develops to anticonvulsants as seizure duration lengthens. Recently, acetaminophen was reported to increase endocannabinoid levels by its conversion to AM 404. Further, cannabinoids are potent anticonvulsants. Here we investigated whether acetaminophen would block SE-like activity in hippocampal neurons. Exposure of cultured hippocampal neurons to a low Mg2+ medium elicits high-frequency epileptiform discharges that exceed 3 Hz (in-vitro SE). Acetaminophen (500 μM) blocks the SE-like activity. CB1 receptor antagonist SR 141716A (1 μM) blocked this inhibitory effect of acetaminophen on SE, indicating that acetaminophen was mediating its anticonvulsant effects through CB1 receptors.

Full-text preview

Available from:
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest the possible involvement of serotonergic and endocannabinoid systems in analgesic, anxiolytic, and anticonvulsant-like actions of paracetamol. Considering the fact that these systems play intricate roles in affective disorders, we investigated the effects of paracetamol in depression-like and compulsion-like behavior. Swiss mice (20-22 g) were subjected to forced swim, tail suspension, or marble-burying tests after an injection of paracetamol either alone or in the presence of AM251 (a CB1 antagonist), fenclonine (pCPA: a 5-HT synthesis inhibitor), AM404 (anandamide uptake inhibitor) or fluoxetine. Paracetamol dose dependently (50-400 mg/kg) decreased depressive and compulsive behaviors. These effects were comparable to those of fluoxetine (5, 10, or 20 mg/kg) and AM404 (10 or 20 mg/kg). Interestingly, fenclonine pretreatment completely abolished the effects of a 50 mg/kg dose of paracetamol. However, similar effects were not observed in AM251-pretreated mice at the same dose. In contrast, AM251 completely antagonized the effects of the 400 mg/kg dose, which was otherwise partially blocked in fenclonine-treated mice. Similar sets of results were observed with fluoxetine and AM404. Thus, it appears that paracetamol-induced antidepressant-like and anticompulsive effects may, at least partially, involve both the serotonergic and the endocannabinoid system. In addition, coadministration of paracetamol and fluoxetine/AM404 at subeffective doses produced synergistic effects, indicating that subthreshold doses of fluoxetine and paracetamol may enable better management in depression and obsessive-compulsive disorder comorbid patients.
    No preview · Article · Oct 2014 · Behavioural Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Status epilepticus (SE) is a life-threatening neurological disorder. It is important to discover new drugs to control SE without the development of pharmacoresistance. Focus on the cannabinoid receptor and cannabinoid-related compounds might be a good option. Cannabinoid receptor 1 (CB1) and orexin receptor 1 (OX1) both belong to the GPCR superfamily and display "cross-talk" interactions, however, there has been no study of the effect of OX1/CB1 in epilepsy. Therefore, we investigated the potential long-term effects of SE on CB1 and OX1 expression in rat hippocampus, aiming to elucidate whether they are involved in the causative mechanism of epilepsy and whether they might form a heterodimer. In this study, SE was induced with kainic acid, and results of immunohistochemistry and RT-PCR both showed that the expression of CB1 in the hippocampus increased after SE and was significantly higher compared to controls especially 1 week post-SE. However we did not find any significant difference in the expression of OX1 between the SE group and the controls at any time. Under immunofluorescence staining, we observed an overlapping distribution of CB1 and OX1 in the hippocampus. The increased expression of CB1 in the hippocampus indicates that CB1 may play an important role in the underlying mechanism of SE, but the effect of OX1 was not obvious. The overlapping distribution of CB1 and OX1 in the hippocampus indicates that they may form a heterodimer to exert their effect in epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.
    No preview · Article · Nov 2014 · Brain Research
  • Source

    Full-text · Article · Dec 2014
Show more