Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters. Exp Toxicol Pathol

Institute of Medical Research and Medicinal Plants Studies, PO Box 6163, Yaoundé, Cameroon.
Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie (Impact Factor: 1.86). 10/2010; 64(4):387-91. DOI: 10.1016/j.etp.2010.10.003
Source: PubMed


Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication.

Download full-text


Available from: Gabriel Agbor, Jan 06, 2015
  • Source
    • "Alvarez‐Parrilla et al. [4]. In animal experiments by Agbor et al. [14], administration of the Piper genus of peppers protected Syrian‐Gold hamsters by retarding LDL oxidation via an increase in the induction period. "

    Full-text · Article · Mar 2014 · European Journal of Lipid Science and Technology
  • Source
    • "treatment of infectious and inflammatory diseases (Roersch, 2010). Previous studies have shown that extracts and pure compounds derived from various parts of Piper umbellatum possess a wide spectrum of pharmacological activities, including antibacterial, antifungal, antioxidant, anti-atherogenic, cytotoxic, antimalarial, analgesic, anti-inflammatory, anti-leishmanial, and antitrypanosomal activities (Roersch, 2010; Agbor et al., 2012). However, to the best of our knowledge, there has been no published report investigating the antibacterial properties of the hydroethanolic extract of Piper umbellatum leaves (HEPu). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethnopharmacological relevance: Piper umbellatum L., Piperaceae, is a shrub that grows up to 3m high. It is commonly known as "capeba" or "pariparoba" in Brazil. Tea prepared using the leaves of this plant is employed in the treatment of infections and inflammatory processes in different countries. Approximately 50 compounds, notably from the flavonoid, alkaloid, terpene, and sterol classes, have been isolated from the leaves of Piper umbellatum. To evaluate the acute toxicity, antibacterial activity, and mode of action of the hydroethanolic extract of Piper umbellatum leaves (HEPu). Materials and methods: Acute toxicity of HEPu against CHO-K1 cells was evaluated using a cytotoxicity assay with Alamar Blue and that against mice was assessed by the Hippocratic test. Antibacterial activity of HEPu was tested using the broth microdilution method using a panel of clinically relevant bacteria, and the effects of HEPu on the bacterial membrane were analyzed in detail. A preliminary phytochemical analysis based on coloration/precipitation was performed according to procedure described in the literature. Secondary metabolites detected were analyzed and confirmed by thin layer chromatography (TLC), spectrophotometry, and high performance liquid chromatography (HPLC). Results: Piper umbellatum did not appear to be toxic in the in vitro (IC50>200 µg/mL) cytotoxicity test. When administered in vivo at doses up to 2000 mg/kg p.o., HEPu did not cause any signs or symptoms of toxicity in mice. It demonstrated a good spectrum of antibacterial activity and its mode of action appeared to be associated with changes in the permeability of bacterial membranes; it led to increased entry of hydrophobic antibiotics, efflux of K(+), and nucleotide leakage. Preliminary phytochemical analysis revealed the presence of flavonoids, alkaloids, terpenes, and sterols in the extract. Spectrophotometric and HPLC analysis revealed the presence of the flavonoids rutin and quercetin. Conclusion: In summary, HEPu has antibacterial activity and low acute toxicity in vitro and in vivo. Its mode of action appears to be associated with changes in the permeability of the bacterial cell wall and cytoplasmic membrane, which can at least be partly attributed to the flavonoids present in the extract.
    Full-text · Article · Nov 2013 · Journal of ethnopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Present inventory evaluates the anti-atherogenic potential of C. glandulosum.Coleb leaf extract (CG) using in vivo and in vitro experimental models. Serum markers of low density lipoprotein (LDL-C) oxidation, cholesterol, triglycerides, lipoproteins, auto-antibody titer, ex vivo LDL-C oxidation, LDL-C aggregation, aortic lipids, histopathological evaluations and immunolocalization of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin were performed in CON [rats treated with single dose of saline (i.p.) and fed with laboratory chow], ATH [rats treated with single dose of vitamin D3 (600,000 IU, i.p) and fed with atherogenic diet] and ATH+CG [rats treated with single dose of vitamin D3 (600,000 IU, i.p.) and fed with atherogenic diet and simultaneously treated with 200 mg/kg CG extract, p.o.] for 8 weeks. CG extract supplementation to atherogenic diet fed rats significantly prevented increment in serum cholesterol, triglycerides, and lipoproteins, markers of LDL-C oxidation, auto-antibody titer and aortic lipids. Also, LDL-C isolated from ATH+CG rats recorded mimimal aggregation and susceptibility to undergo ex vivo LDL-C oxidation. Microscopic evaluation of thoracic aorta of ATH+CG rats reveled prevention of atheromatous plaque formation, accumulation of lipid laden macrophages, calcium deposition, distortion/defragmentation of elastin, accumulation of macrophages and, down regulation of cell adhesion molecules (VCAM-1 and P-selectin) expression. Further, in vitro monocyte to macrophage differentiation was significantly attenuated in presence of CG extract (200 µg/mL). It can be concluded from the present study that, CG extract is capable of controlling induction of experimental atherosclerosis and warrants further scrutiny at the clinical level as a possible therapeutic agent.
    No preview · Article · Sep 2011 · Immunopharmacology and Immunotoxicology
Show more