A pilot study on the regeneration of ferrous chelate complex in NOx scrubber solution by a biofilm electrode reactor

Institute of Environmental Engineering, Zhejiang University (Yuquan Campus), Hangzhou, China.
Bioresource Technology (Impact Factor: 4.49). 10/2010; 102(3):2605-9. DOI: 10.1016/j.biortech.2010.10.012
Source: PubMed


A chemical absorption-biological reduction integrated process has been proposed for the removal of nitrogen oxides (NO(x)) from flue gases. In this study, we report a new approach using biofilm electrode reactor (BER) to regenerate Fe(II)EDTA via simultaneously reducing Fe(II)EDTA-NO and Fe(III)EDTA in NO(x) scrubber solution. Biofilm formed on the surface of the cathode was confirmed by Environmental Scan Electro-Microscope. Experimental results demonstrated that it was effective and feasible to utilize the BER to promote the reduction of Fe(II)EDTA-NO and Fe(III)EDTA simultaneously. The reduction efficiency of Fe(II)EDTA-NO and Fe(III)EDTA was up to 85% and 78%, respectively when the BER was continuously operated with electricity current at 30 mA. The absence of electricity induced an immediate decrease in reduction efficiency, indicating that the bio-regeneration of ferrous chelate complex was electrochemically accelerated. The present approach is considered advantageous for the enhanced bio-reduction in the NO(x) scrubber solution.

10 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a major pollutant flue gas, nitric oxide (NO) emission has received great attention of the world. Various technologies have been developed to reduce NO emission. Among them, wet scrubbing approach seems to be promising concept. Ferrous chelate solution has been demonstrated as a suitable and efficient option in flue gas denitrification process due to its high reaction rate with NO and good regeneration ability. However, NO absorption rate is strongly affected by mass transfer limitation of NO and FeII(EDTA) solution in traditional reactors. In this study, RPB is firstly introduced as a gas–liquid reactor to enhance the NO removal efficiency by FeII(EDTA) solution. Preliminary experimental results are presented on the absorption of NO by investigating the effects of operating parameters on NO removal efficiency in RPB. The removal efficiency peaks when the pH value of the absorbent reaches 7. The optimum temperature for this gas–liquid absorption system is in the range of 293–303 K. When the gravity level of the RPB is higher than 150 g, the removal efficiency could reach 87%. In addition, the NO removal efficiency decreases with the increase of the gas–liquid ratio. The simultaneous increase of the gas and the liquid flow rates has no obvious effect on the removal efficiency. The obtained results imply a great potential of RPB in the removal of NO from flue gases.
    No preview · Article · Feb 2012 · The Chemical Engineering Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen monoxide (NO), a major air pollutant, can be directly used as a precursor for nitrogen fertilizer production as long as it is collected in a pure form. In this study, an innovative dual fuel cell system was designed for the efficient capture and collection of pure NOX from industrial flue gases as well as for electricity generation. The system consisted of a methanol/ferric-EDTA fuel cell for NOX capture and a ferrous-EDTA–NO/air fuel cell for captured NOX collection. In a separation operation, the maximum power densities, which were obtained at pH 2 and 20 °C, were 785 and 1,840 mW m−2 in FC1 and FC2, respectively, and increased with temperature. The highest overall outputs from FC1 and FC2 were measured at pH 2, a result that is possibly attributable to the redox potential difference between the anolyte and catholyte in the fuel cells. In the combined operation, ferrous-EDTA–NO prepared in the cathode compartment of FC1 was successfully and efficiently converted to ferric-EDTA and NO in the anode compartment of FC2. The present approach was considered advantageous for advanced NOX reuse technology in the respect that valuable products, such as fertilizer, could be produced.
    No preview · Article · Oct 2013 · Journal of Applied Electrochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A mixed absorbent had been proposed to enhance the chemical absorption-biological reduction process for NO(x) removal from flue gas. The mole ratio of the absorbent of Fe(II)Cit to Fe(II)EDTA was selected to be 3. After the biofilm was formed adequately, some influential factors, such as the concentration of NO, O(2), SO(2) and EBRT were investigated. During the long-term running, the system could keep on a steady NO removal efficiency (up to 90%) and had a flexibility in the sudden changes of operating conditions when the simulated flue gas contained 100-500 ppm NO, 100-800 ppm SO(2), 1-5% (v/v) O(2), and 15% (v/v) CO(2). However, high NO concentration (>800 ppm) and relative short EBRT (<100s) had significant negative effect on NO removal. The results indicate that the new system by using mixed-absorbent can reduce operating costs in comparison with the single Fe(II)EDTA system and possesses great potential for scale-up to industrial applications.
    Full-text · Article · Jun 2011 · Bioresource Technology
Show more