Rhomboid homologs in Mycobacteria: insights from phylogeny and genomic analysis

Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
BMC Microbiology (Impact Factor: 2.73). 10/2010; 10(1):272. DOI: 10.1186/1471-2180-10-272
Source: PubMed


Rhomboids are ubiquitous proteins with diverse functions in all life kingdoms, and are emerging as important factors in the biology of some pathogenic apicomplexa and Providencia stuartii. Although prokaryotic genomes contain one rhomboid, actinobacteria can have two or more copies whose sequences have not been analyzed for the presence putative rhomboid catalytic signatures. We report detailed phylogenetic and genomic analyses devoted to prokaryotic rhomboids of an important genus, Mycobacterium.
Many mycobacterial genomes contained two phylogenetically distinct active rhomboids orthologous to Rv0110 (rhomboid protease 1) and Rv1337 (rhomboid protease 2) of Mycobacterium tuberculosis H37Rv, which were acquired independently. There was a genome-wide conservation and organization of the orthologs of Rv1337 arranged in proximity with glutamate racemase (mur1), while the orthologs of Rv0110 appeared evolutionary unstable and were lost in Mycobacterium leprae and the Mycobacterium avium complex. The orthologs of Rv0110 clustered with eukaryotic rhomboids and contained eukaryotic motifs, suggesting a possible common lineage. A novel nonsense mutation at the Trp73 codon split the rhomboid of Mycobacterium avium subsp. Paratuberculosis into two hypothetical proteins (MAP2425c and MAP2426c) that are identical to MAV_1554 of Mycobacterium avium. Mycobacterial rhomboids contain putative rhomboid catalytic signatures, with the protease active site stabilized by Phenylalanine. The topology and transmembrane helices of the Rv0110 orthologs were similar to those of eukaryotic secretase rhomboids, while those of Rv1337 orthologs were unique. Transcription assays indicated that both mycobacterial rhomboids are possibly expressed.
Mycobacterial rhomboids are active rhomboid proteases with different evolutionary history. The Rv0110 (rhomboid protease 1) orthologs represent prokaryotic rhomboids whose progenitor may be the ancestors of eukaryotic rhomboids. The Rv1337 (rhomboid protease 2) orthologs appear more stable and are conserved nearly in all mycobacteria, possibly alluding to their importance in mycobacteria. MAP2425c and MAP2426c provide the first evidence for a split homologous rhomboid, contrasting whole orthologs of genetically related species. Although valuable insights to the roles of rhomboids are provided, the data herein only lays a foundation for future investigations for the roles of rhomboids in mycobacteria.

  • Source
    • "Apolipoproteins participate in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. BPE275 contains 253 amino acids and is a member of rhomboid family, a ubiquitous family of serine proteases that function in varied cellular processes including intercellular signalling, parasitic invasion of host cells, and mitochondrial morphology (Kateete et al., 2010). BPE123 is a 17-kDa hypothetical protein with prediction for a signal peptide and a dimeric coiled coil motif. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells. Brucella T4SS (VirB) is essential to subvert lysosome fusion and to create an organelle permissive for replication. One possible role for VirB is to translocate effector proteins that modulate host cellular functions for the biogenesis of the replicative organelle. We hypothesized that proteins with eukaryotic domains or protein-protein interaction domains, among others, would be good candidates for modulation of host cell functions. To identify these candidates, we performed an in silico screen looking for proteins with distinctive features. Translocation of 84 potential substrates was assayed using adenylate cyclase reporter. By this approach, we identified six proteins that are delivered to the eukaryotic cytoplasm upon infection of macrophage-like cells and we could determine that four of them, encoded by genes BAB1_1043, BAB1_2005, BAB1_1275 and BAB2_0123, require a functional T4SS for their delivery. We confirmed VirB-mediated translocation of one of the substrates by immunofluorescence confocal microscopy, and we found that the N-terminal 25 amino acids are required for its delivery into cells.
    Full-text · Article · Jun 2011 · Cellular Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhomboids are ubiquitous proteins with unknown roles in mycobacteria. However, bioinformatics suggested putative roles in DNA replication pathways and metabolite transport. Here, mycobacterial rhomboid-encoding genes were characterized; first, using the Providencia stuartii null-rhomboid mutant and then deleted from Mycobacterium smegmatis for additional insight in mycobacteria. Using in silico analysis we identified in M. tuberculosis genome the genes encoding two putative rhomboid proteins; Rv0110 (referred to as "rhomboid protease 1") and Rv1337 ("rhomboid protease 2"). Genes encoding orthologs of these proteins are widely represented in all mycobacterial species. When transformed into P. stuartii null-rhomboid mutant (ΔaarA), genes encoding mycobacterial orthologs of "rhomboid protease 2" fully restored AarA activity (AarA is the rhomboid protein of P. stuartii). However, most genes encoding mycobacterial "rhomboid protease 1" orthologs did not. Furthermore, upon gene deletion in M. smegmatis, the ΔMSMEG_4904 single mutant (which lost the gene encoding MSMEG_4904, orthologous to Rv1337, "rhomboid protease 2") formed the least biofilms and was also more susceptible to ciprofloxacin and novobiocin, antimicrobials that inhibit DNA gyrase. However, the ΔMSMEG_5036 single mutant (which lost the gene encoding MSMEG_5036, orthologous to Rv0110, "rhomboid protease 1") was not as susceptible. Surprisingly, the double rhomboid mutant ΔMSMEG_4904-ΔMSMEG_5036 (which lost genes encoding both homologs) was also not as susceptible suggesting compensatory effects following deletion of both rhomboid-encoding genes. Indeed, transforming the double mutant with a plasmid encoding MSMEG_5036 produced phenotypes of the ΔMSMEG_4904 single mutant (i.e. susceptibility to ciprofloxacin and novobiocin). Mycobacterial rhomboid-encoding genes exhibit differences in complementing aarA whereby it's only genes encoding "rhomboid protease 2" orthologs that fully restore AarA activity. Additionally, gene deletion data suggests inhibition of DNA gyrase by MSMEG_4904; however, the ameliorated effect in the double mutant suggests occurrence of compensatory mechanisms following deletion of genes encoding both rhomboids.
    Full-text · Article · Sep 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endopeptidase classification based on catalytic mechanism and evolutionary history has proven to be invaluable to the study of proteolytic enzymes. Such general mechanistic- and evolutionary- based groupings have launched experimental investigations, because knowledge gained for one family member tends to apply to the other closely related enzymes. The serine endopeptidases represent one of the most abundant and diverse groups, with their apparently successful proteolytic mechanism having arisen independently many times throughout evolution, giving rise to the well-studied soluble chemotrypsins and subtilisins, among many others. A large and diverse family of polytopic transmembrane proteins known as rhomboids has also evolved the serine protease mechanism. While the spatial structure, mechanism, and biochemical function of this family as intramembrane proteases has been established, the cellular roles of these enzymes as well as their natural substrates remain largely undetermined. While the evolutionary history of rhomboid proteases has been debated, sorting out the relationships among current day representatives should provide a solid basis for narrowing the knowledge gap between their biochemical and cellular functions. Indeed, some functional characteristics of rhomboid proteases can be gleaned from their evolutionary relationships. Finally, a specific case where phylogenetic profile analysis has identified proteins that contain a C-terminal processing motif (GlyGly-Cterm) as co-occurring with a set of bacterial rhomboid proteases provides an example of potential target identification through bioinformatics. This article is part of a Special Issue entitled: Intramembrane Proteases.
    Preview · Article · Jul 2013 · Biochimica et Biophysica Acta
Show more