Palop JJ, Roberson ED, Cobos I. Step-by-step in situ hybridization method for localizing gene expression changes in the brain. Methods Mol Biol 670: 207-230

Department of Neurology, Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2011; 670:207-30. DOI: 10.1007/978-1-60761-744-0_15
Source: PubMed


RNA in situ hybridization is a powerful technique for examining gene expression in specific cell populations. This method is particularly useful in the central nervous system with its high cellular diversity and dynamic gene expression regulation associated with development, plasticity, neuronal activity, aging, and disease. Standard quantitative techniques such as Western blotting and real-time PCR allow the detection of altered gene or protein expression but provide no information about their cellular source or possible alterations in expression patterns. Here, we describe a step-by-step RNA in situ hybridization method on adult and embryonic brain sections for quantitative neuroscience. We include fully detailed protocols for RNase-free material preparation, perfusion, fixation, sectioning, selection of expressed sequence tag cDNA clones, linearization of cDNA, synthesis of digoxigenin-labeled RNA probes (riboprobes), in situ hybridization on floating and mounted sections, nonradioactive immunohistochemical detection of riboprobes for light and fluorescence microscopy, and double labeling. We also include useful information about quality-control steps, key online sites, commercially available products, stock solutions, and storage. Finally, we provide examples of the utility of this approach in understanding the neuropathogenesis of Alzheimer's disease. With virtually all genomic coding sequences cloned or being cloned into cDNA plasmids, this technique has become highly accessible to explore gene expression profiles at the cellular and brain region level.

Download full-text


Available from: Jorge J Palop
  • Source
    • "All in situ hybridizations on brain sections from treated animals were conducted in contemporary with brain sections from control animals. The use of non-radioactive in situ hybridization using digoxigeninlabeled probes for semiquantitative evaluation of the in situ staining has been previously validated by us and other laboratories (Palop et al, 2011; Swanger et al, 2011; Tongiorgi et al, 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) is encoded by multiple BDNF transcripts, whose function is unclear. We recently showed that a subset of BDNF transcripts can traffic into distal dendrites in response to electrical activity, while others are segregated into the somatoproximal domains. Physical exercise and antidepressant treatments exert their beneficial effects through upregulation of BDNF, which is required to support survival and differentiation of newborn dentate gyrus (DG) neurons. While these DG processes are required for the antidepressant effect, a role for CA1 in antidepressant action has been excluded, and the effect on CA3 neurons remains unclear. Here, we show for the first time that physical exercise and antidepressants induce local increase of BDNF in CA3. Voluntary physical exercise for 28 consecutive days, or 2-week treatment with 10 mg/kg per day fluoxetine or reboxetine, produced a global increase of BDNF mRNA and protein in the neuronal somata of the whole hippocampus and a specific increase of BDNF in dendrites of CA3 neurons. This increase was accounted for by BDNF exon 6 variant. In cultured hippocampal neurons, application of serotonin or norepinephrine (10-50 μM) induced increase in synaptic transmission and targeting of BDNF mRNA in dendrites. The increased expression of BDNF in CA3 dendrites following antidepressants or exercise further supports the neurotrophin hypothesis of antidepressants action and confirms that the differential subcellular localization of BDNF mRNA splice variants provides a spatial code for a selective expression of BDNF in specific subcellular districts. This selective expression may be exploited to design more specific antidepressants.
    Full-text · Article · Feb 2012 · Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition modulates receptive field properties and integrative responses of neurons in cortical circuits. The contribution of specific interneuron classes to cortical circuits and emergent responses is unknown. Here, we examined neuronal responses in primary visual cortex (V1) of adult Dlx1(-/-) mice, which have a selective reduction in cortical dendrite-targeting interneurons (DTIs) that express calretinin, neuropeptide Y, and somatostatin. The V1 neurons examined in Dlx1(-/-) mice have reduced orientation selectivity and altered firing rates, with elevated late responses, suggesting that local inhibition at dendrites has a specific role in modulating neuronal computations. We did not detect overt changes in the physiological properties of thalamic relay neurons and features of thalamocortical projections, such as retinotopic maps and eye-specific inputs, in the mutant mice, suggesting that the defects are cortical in origin. These experimental results are well explained by a computational model that integrates broad tuning from dendrite-targeting and narrower tuning from soma-targeting interneuron subclasses. Our findings suggest a key role for DTIs in the fine-tuning of stimulus-specific cortical responses.
    Full-text · Article · Jun 2011 · Cerebral Cortex
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.
    Full-text · Article · Apr 2012 · Cell
Show more