Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET.

Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, San Francisco, California 94143, USA.
Medical Physics (Impact Factor: 2.64). 09/2010; 37(9):4861-7.
Source: PubMed


A pretherapy 124I-metaiodobenzylguanidine (MIBG) positron emission tomography (PET)/computed tomography (CT) provides a potential method to estimate radiation dose to normal organs, as well as tumors prior to 131I-MIBG treatment of neuroblastoma or pheochromocytoma. The aim of this work was to estimate human-equivalent internal radiation dose of 124I-MIBG using PET/CT data in a murine xenograft model.
Athymic mice subcutaneously implanted with NB1691 cells that express high levels of human norepinephrine transporter (n = 4) were imaged using small animal microPET/CT over 96 h (approximate imaging time points: 0.5, 2, 24, 52, and 96 h) after intravenous administration of 3.07-4.84 MBq of 124I-MIBG via tail vein. The tumors did not accumulate 124I-MIBG to a detectable level. All four animals were considered as control and organ radiation dosimetry was performed. Volumes of interest were drawn on the coregistered CT images for thyroid, heart, lung, liver, kidney, and bladder, and transferred to PET images to obtain pharmacokinetic data. Based on tabulated organ mass distributions for both mice and adult male human, preclinical pharmacokinetic data were extrapolated to their human-equivalent values. Radiation dose estimations for different age groups were performed using the OLINDA/EXM software with modified tissue weighting factors in the recent International Commission on Radiological Protection (ICRP) Publication 103.
The mean effective dose from 124I-MIBG using weighting factors from ICRP 103 to the adult male was estimated at 0.25 mSv/MBq. In different age groups, effective doses using values from ICRP 103 were estimated as follows: Adult female: 0.34, 15-yr-old: 0.39 mSv/MBq, 10-yr-old: 0.58 mSv/MBq, 5-yr-old: 1.03 mSv/MBq, 1-yr-old: 1.92 mSv/MBq, and newborn: 3.75 mSv/ MBq. For comparison, the reported effective dose equivalent of 124I-NaI for adult male (25% thyroid uptake, MIRD Dose Estimate Report No. 5) was 6.5 mSv/MBq.
The authors estimated human-equivalent internal radiation dose of 124I-MIBG using preclinical imaging data. As a reference, the effective dose estimation showed that 124I-MIBG would deliver less radiation dose than 124I-NaI, a radiotracer already being used in patients with thyroid cancer.

Download full-text


Available from: Youngho Seo
  • Source
    • "The mean effective dose from 124I-MIBG to the adult male human, extrapolated from animal data, was estimated to be 0.25 mSv/MBq. The highest mean equivalent dose was in the thyroid, at 2.343 mSv/MBq [19]. Clinical trials regarding measurements of organ and tumor dosimetry, using 124I-MIBG PET/CT in patients with refractory or relapsed neuroblastoma, and the assessment of the accuracy of tumor imaging using 124I-MIBG PET/CT versus 123I-MIBG scan with 3-dimensional imaging by SPECT or SPECT/CT by number, intensity of uptake, and localization of sites of tumor are in progress [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: (124)Iodine ((124)I) with its 4.2 d half-life is particularly attractive for in vivo detection and quantification of longer-term biological and physiological processes; the long half-life of (124)I is especially suited for prolonged time in vivo studies of high molecular weight compounds uptake. Numerous small molecules and larger compounds like proteins and antibodies have been successfully labeled with (124)I. Advances in radionuclide production allow the effective availability of sufficient quantities of (124)I on small biomedical cyclotrons for molecular imaging purposes. Radioiodination chemistry with (124)I relies on well-established radioiodine labeling methods, which consists mainly in nucleophilic and electrophilic substitution reactions. The physical characteristics of (124)I permit taking advantages of the higher PET image quality. The availability of new molecules that may be targeted with (124)I represents one of the more interesting reasons for the attention in nuclear medicine. We aim to discuss all iodine radioisotopes application focusing on (124)I, which seems to be the most promising for its half-life, radiation emissions, and stability, allowing several applications in oncological and nononcological fields.
    Full-text · Article · May 2014 · BioMed Research International
  • Source
    • "Values were expressed as mean AE SD (n = 5/group). Assuming similar pharmacokinetics in mice and humans, the activity in organs at different time points post injection was used to calculate single exponential effective halflives and residence times for each organ [21] [22]. Estimated humanabsorbed organ doses of 64 Cu–DOTA–VEGF 121 /rGel were calculated from the time-activity curves (TACs) derived from the biodistribution data in non-tumor-bearing BALB/c mice with an average weight of 21.3 g using standard female and male human phantoms and the Organ Level Internal Dose Assessment/Exponential Modeling software (OLINDA/EXM; Vanderbilt University, Nashville , TN, USA) [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As a part of an ongoing assessment of its mechanism of action, we evaluated the in vivo pharmacokinetics, tissue distribution, toxicity and antitumor efficacy of VEGF(121)/rGel, a novel fusion protein. Pharmacokinetic studies showed that VEGF(121)/rGel cleared from the circulation in a biphasic manner with calculated half-lives of 0.3 and 6h for the alpha and beta phases, respectively. Pharmacokinetic evaluation of (64)Cu-DOTA-VEGF(121)/rGel showed relatively high blood retention 30min after injection (26.6±1.73% ID/g), dropping to 11.8±2.83% and 0.82±0.11% ID/g at 60 and 240min post injection, respectively. Tissue uptake studies showed that kidneys, liver and tumor had the highest drug concentrations 48h after administration. The maximum tolerated dose (MTD), based on a QOD×5 i.v. administration schedule, was found to be 18mg/kg with an LD(50) of 25mg/kg. Treatment of BALB/c mice with VEGF(121)/rGel at doses up to the MTD caused no alterations in hematologic parameters. However, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) parameters increased in a dose-related manner. The no-observable-adverse-effect-level (NOAEL) was determined to be 20% of the MTD (3.6mg/kg). VEGF(121)/rGel treatment of mice bearing orthotopically-placed MDA-MB-231 breast tumors caused increased vascular permeability of tumor tissue by 53% compared to saline-treated controls. Immunohistochemical analysis showed significant tumor hypoxia and necrosis as a consequence of vascular damage. In summary, VEGF(121)/rGel appears to be an effective therapeutic agent causing focused damage to tumor vasculature with minimal toxic effects to normal organs. This agent appears to be an excellent candidate for further clinical development.
    Full-text · Article · Sep 2012 · Biochemical pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paragangliomas are neural crest-derived tumors, arising either from chromaffin sympathetic tissue (in adrenal, abdominal, intra-pelvic, or thoracic paraganglia) or from parasympathetic tissue (in head and neck paraganglia). They have a specific cellular metabolism, with the ability to synthesize, store, and secrete catecholamines (although most head and neck paragangliomas do not secrete any catecholamines). This disease is rare and also very heterogeneous, with various presentations (e.g., in regards to localization, multifocality, potential to metastasize, biochemical phenotype, and genetic background). With growing knowledge, notably about the pathophysiology and genetic background, guidelines are evolving rapidly. In this context, functional imaging is a challenge for the management of paragangliomas. Nuclear imaging has been used for exploring paragangliomas for the last three decades, with MIBG historically as the first-line exam. Tracers used in paragangliomas can be grouped in three different categories. Agents that specifically target catecholamine synthesis, storage, and secretion pathways include: 123 and 131I-metaiodobenzylguanidine (123/131I-MIBG), 18F-fluorodopamine (18F-FDA), and 18F-fluorodihydroxyphenylalanine (18F-FDOPA). Agents that bind somatostatin receptors include 111In-pentetreotide and 68Ga-labeled somatostatin analog peptides (68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE). The non-specific agent most commonly used in paragangliomas is 18F-fluorodeoxyglucose (18F-FDG). This review will first describe conventional scintigraphic exams that are used for imaging paragangliomas. In the second part we will emphasize the interest in new PET approaches (specific and non-specific), considering the growing knowledge about genetic background and pathophysiology, with the aim of understanding how tumors behave, and optimally adjusting imaging technique for each tumor type.
    Preview · Article · Jan 2011 · Frontiers in Oncology
Show more