Validation of recombinant Sendai virus in a non-natural host model

Department of Gene Therapy, Imperial College London, National Heart and Lung Institute, Manresa Road, London, UK.
Gene therapy (Impact Factor: 3.1). 10/2010; 18(2):182-8. DOI: 10.1038/gt.2010.131
Source: PubMed


We have previously shown that recombinant Sendai virus (SeV) vector, derived from murine parainfluenza virus, is one of the most efficient vectors for airway gene transfer. We have also shown that SeV-mediated transfection on second administration, although reduced by 60% when compared with levels achieved after a single dose, is still high because of the efficient transfection achieved by SeV vector in murine airways. Here, we show that these levels further decrease on subsequent doses. In addition, we validated SeV vector repeat administration in a non-natural host model, the sheep. As part of these studies we first assessed viral stability in a Pari LC Plus nebuliser, a polyethylene catheter (PEC) and the Trudell AeroProbe. We also compared the distribution of gene expression after PEC and Trudell AeroProbe administration and quantified virus shedding after sheep transduction. In addition, we show that bronchial brushings and biopsies, collected in anaesthetized sheep, can be used to assess SeV-mediated gene expression over time. Similar to mice, gene expression in sheep was transient and had returned to baseline values by day 14. In conclusion, the SeV vector should be strongly considered for lung-related applications requiring a single administration of the vector even though it might not be suitable for diseases requiring repeat administration.

Download full-text


Available from: Gerry Mclachlan, Jun 23, 2014
  • Source
    • "In CF gene therapy, adenoviral (Ad) vectors have been widely used in animal and clinical studies. Of the 25 clinical trials for CF since 1993, 10 have used Ad vectors.20,21 Recombinant adenovirus with tropism for airway cells can efficiently transduce both dividing and nondividing cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF). However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR). Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e127; doi:10.1038/mtna.2013.55; published online 8 October 2013.
    Full-text · Article · Oct 2013 · Molecular Therapy - Nucleic Acids
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF) gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV) have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal) in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus
    Preview · Article · Dec 2010 · Virus Adaptation and Treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the development of gene therapy for cystic fibrosis (CF) was high priority for many groups in academia and industry in the first 10-15 years after cloning the cystic fibrosis transmembrane conductance regulator (CFTR) gene, more recently active research into CF gene therapy is only being performed by a small number of committed groups. However, despite the waning enthusiasm, which is largely due to the realization that gene transfer into lungs is more difficult than originally thought, and the fact that meaningful clinical trials are expensive and difficult to perform, gene therapy continues to hold promise for the treatment of CF lung disease. Problems related to repeat administration of adenovirus and adeno-associated virus-based vectors led to a focus on non-viral vectors in clinical trials. However, the recent evidence that lentiviral vectors may be able to evade the immune system and, thereby, allow for repeat administration and long-lasting expression opens new doors for the use of viral vectors in the context of CF gene therapy. In addition, early pre-clinical studies have recently been initiated to address cell therapy-based approaches for CF. In this review, we discuss recent developments with viral and non-viral vectors and cell therapy, and provide an update on clinical gene therapy studies.
    No preview · Article · Apr 2011 · BioDrugs
Show more