The transcriptomic response to viral infection of two strains of shrimp (Litopenaeus vannamei)

Hollings Marine Laboratory, College of Charleston, Biology Department, Charleston, SC, USA.
Developmental and comparative immunology (Impact Factor: 2.82). 10/2010; 35(3):241-6. DOI: 10.1016/j.dci.2010.10.001
Source: PubMed


The extent to which data-intensive studies of the transcriptome can provide insight into biological responses is not well defined, especially in the case of species (such as shrimp) where much physiological and biochemical knowledge is missing. In this study we took a transcriptomic approach to gain insight into the response to viral infection of two strains of the Pacific whiteleg shrimp (Litopenaeus vannamei) that differ in their resistance to Taura Syndrome Virus (TSV). Changes in gene expression in the hepatopancreas following infection with TSV and Yellow Head Virus (YHV) were assessed using a cDNA microarray containing 2469 putative unigenes. The null hypothesis tested was that significant differences between the transcriptomic responses to viral infection of resistant and sensitive strains would not be detected. This hypothesis was broadly rejected, with the most surprising observation being that the baseline (control, unchallenged) sensitive and resistant strains expressed distinguishable transcriptomic signatures. The resistant line was pre-disposed to lower expression of genes encoding viral (and host) proteins. Many of the genes differentiating resistant and sensitive lines are involved in protein metabolism, cellular trafficking, immune defense and stress response, although it was not possible to clearly identify candidate genes responsible for TSV resistance. In contrast to TSV challenge, YSV either failed to perturb the host transcriptome or created a "confused" response that was difficult to interpret.

21 Reads
  • Source
    • "The fact that Veloso et al. (2011) found that TSV exposure elicits a distinctive transcriptional pattern and our current work showed a distinct response at 24 h but not at 6 h indicates that there is a relatively rapid (between 6 and 24 h postinoculation) and stable (between 24 h and 14 d postexposure ) transcriptional response to TSV exposure. In addition, the results of both our research and that of Veloso et al. (2011) are largely complementary in that in both cases the different lineages are sufficiently different in the gene expression profiles elicited by exposure to TSV that they can easily be distinguished based on gene expression data and, therefore, it is highly likely that alterations in gene expression are responsible in some part for conferring resistance to TSV. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The goal of the present research was to identify the genes that are differentially expressed between two lineages of Pacific white shrimp Litopenaeus vannamei displaying different susceptibilities to Taura syndrome virus (TSV) and to understand the molecular pathways involved in resistance to the disease. An oligonucleotide microarray was constructed and used to identify several genes that were differentially expressed in the two L. vannamei lineages following infection with TSV. Individual L. vannamei from either resistant or susceptible lineages were exposed via injection to TSV. Individuals were removed at 6 and 24 h postinfection, and gene expression was assessed with the in-house microarray. The microarray data resulted in the selection of a set of 397 genes that were altered by TSV exposure between the different lineages. Significantly differentially expressed genes were subjected to hierarchical clustering and revealed a lineage-dependent clustering at 24 h postinoculation, but not at 6 h postinoculation. Discriminant analysis resulted in the identification of a set of 11 genes that were able to correctly classify Pacific white shrimp as resistant or susceptible based on gene expression data. Received June 21, 2013; accepted October 24, 2013.
    Full-text · Article · Sep 2014 · Journal of Aquatic Animal Health
  • Source
    • "By May 2012, 162,993 ESTs from many organs and tissues have been released on Genbank. These data have been used for cloning functional genes, selecting genetic molecular markers, and designing cDNA microarrays [2], [9]–[11]. However, because of the limitations of the traditional methods used for ESTs sequencing, the now available transcriptome data of L. vannamei are still insufficient for research requirements relative to the size of its genome. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.
    Full-text · Article · Oct 2012 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, RNA interference pathways have emerged in eukaryotes as critical regulators of many diverse biological functions including, among others, transcriptional gene regulation, post-transcriptional gene silencing, heterochromatin remodelling, suppression of transposon activity, and antiviral defences. Although this gene silencing process has been reported to be relatively well conserved in species of different phyla, there are important discrepancies between plants, invertebrates and mammals. In penaeid shrimp, the existence of an intact and functional RNAi machinery is supported by a rapidly growing body of evidence. However, the extent to which this process participates to the host immune responses remains poorly defined in this non-model organism. This review summarizes our current knowledge of RNAi mechanisms in shrimp and focuses on their implication in antiviral activities and shrimp immune defences.
    No preview · Article · Jun 2012 · Fish &amp Shellfish Immunology
Show more