Article

Development of Sporadic Microsatellite Instability in Colorectal Tumors Involves Hypermethylation at Methylated-In-Tumor Loci in Adenoma

Department of Molecular Oncology, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA.
American Journal Of Pathology (Impact Factor: 4.59). 10/2010; 177(5):2347-56. DOI: 10.2353/ajpath.2010.091103
Source: PubMed

ABSTRACT

Microsatellite instability (MSI) and genomic hypermethylation of methylated-in-tumor (MINT) loci are both strong prognostic indicators in a subgroup of patients with sporadic colorectal cancer (CRC). The present study was designed to determine whether the methylation of MINT loci during the progression of adenoma to CRC is related to MSI in CRC cases. Methylation index (MI) was measured by absolute quantitative assessment of methylated alleles at seven MINT loci in primary CRC with contiguous adenomatous and normal tissues of 79 patients. Results were then validated in primary CRC tissues from an independent group of 54 patients. Increased MI of both MINT loci 1 and 31 was significantly associated with MSI in CRC and was specific for adenoma. Total MI and the number of methylated loci were threefold (P=0.02) and fivefold (P=0.004) higher, respectively, in adenomas associated with microsatellite-stable CRC versus microsatellite-unstable CRC. MINT MI was found to be correlated with mismatch repair protein expression, MSI, BRAF (V600E) mutation status, mut-L homologue 1 methylation status, and disease-specific survival in the second independent validation group of patients. MI of specific MINT loci may be prognostic indicators of colorectal adenomas that will develop into sporadic microsatellite-unstable CRCs. Increased MINT locus methylation appears to precede MSI and may have utility in defining clinical pathology in the absence of features of malignant invasive tumors.

Download full-text

Full-text

Available from: Rob A E M Tollenaar
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer patients with similar clinical stage may experience different disease outcomes. Aberrant DNA methylation of primary breast tumors can have impact on the clinical outcome. This study aimed to assess clinical utility of tumor-specific methylated sequences (MINT17, 31) and tumor-related gene (RARβ2) methylation classification in primary breast tumors. Absolute quantitative assessment of methylated alleles (AQAMA) was used to determine the methylation index (MI) of MINT17, MINT31, and RARß2 in 242 primary tumors of early stage breast cancer patients. Patients were classified into three methylation groups: meth-N, with normal methylation levels of all biomarkers; meth-L, with one biomarker hypermethylation; and meth-H, with hypermethylation of >1 biomarker. Disease outcome of methylation groups was compared during follow-up. MI of all biomarkers was successfully obtained in 237 tumors of which 79 (33%) were classified as meth-N, 86 (36%) as meth-L, and 72 (30%) as meth-H. Meth-H status was a risk factor for distant recurrence (DR) (log-rank P = 0.007) and shorter disease-free survival (DFS) (log-rank P = 0.039). Methylation classification had strongest prognostic value for patients with ER-negative tumors. In multivariate analysis (n = 222), ER-negative meth-H patients had a 4.1-fold increased risk of DR (95% CI 1.80-9.59; meth-N HR 1.0, P = 0.001), a 4.2-fold increased risk of overall recurrence (OR) (95% CI 1.88-9.47; meth-N HR 1.0, P = 0.001), and a 3.1-fold shorter DFS (95% CI 1.57-5.98; meth-N HR 1.0, P = 0.003). Methylation classification of primary breast cancer is an independent prognostic factor for disease outcome in patients with ER-negative tumors. The study's findings will have to be confirmed in an independent dataset.
    No preview · Article · Apr 2011 · Breast Cancer Research and Treatment
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As an integral component of the microenvironment in colorectal cancer (CRC), stromal cells can influence tumor progression. Found in the extracellular matrix of CRC, secreted protein acidic and rich in cysteine (SPARC) is expressed in stromal and CRC cells. While SPARC's influence on CRC is not clear, we hypothesized that epigenetically regulated SPARC expression in the microenvironment stromal cells of CRC can affect primary CRC progression and is influenced by lymphovascular invasion (LVI). Quantitative immunohistochemistry (IHC) analysis of paraffin-embedded (n=72) from 37 LVI-positive and 35 LVI-negative primary CRCs was performed. MassARRAY sequencing was performed to assess the methylation status of the promoter region in 22 LVI-positive and 20 LVI-negative CRC and to identify specific CpG island(s) regulating SPARC expression. SPARC in CRC cells was not correlated with LVI, whereas SPARC in the microenvironment stromal cells was inversely related to LVI (P < 0.0001). There was a direct relationship between LVI and 6 specific CpG site methylation in the SPARC promoter region of stromal cells (P = 0.017) but not in CRC cells. Stromal SPARC expression inversely correlated with VEGF-A expression in CRC (P = 0.003) and positively correlated with HSP27 expression (P = 0.009). The results suggested that the epigenetic regulation of SPARC expression in tumor cells versus stromal cells of CRC is significantly different. Stromal cell SPARC expression is epigenetically influenced by LVI of CRC tumors, and may play a significant role in primary CRC progression.
    Full-text · Article · Aug 2011 · Epigenetics: official journal of the DNA Methylation Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high) colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-β, TGF-β) signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain. We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study). Cox proportional hazards model was used to compute mortality hazard ratio (HR), adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP), LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072) of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159) and 30% (48/158) of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS)/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI), 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; p = 0.0011]. TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI) in colorectal carcinoma.
    Full-text · Article · Sep 2011 · PLoS ONE
Show more