Reversal of a Mutator Activity by a Nearby Fidelity-Neutral Substitution in the RB69 DNA Polymerase Binding Pocket

Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-104 Warsaw, Poland.
Journal of Molecular Biology (Impact Factor: 4.33). 10/2010; 404(5):778-93. DOI: 10.1016/j.jmb.2010.09.058
Source: PubMed


Phage RB69 B-family DNA polymerase is responsible for the overall high fidelity of RB69 DNA synthesis. Fidelity is compromised when conserved Tyr567, one of the residues that form the nascent polymerase base-pair binding pocket, is replaced by alanine. The Y567A mutator mutant has an enlarged binding pocket and can incorporate and extend mispairs efficiently. Ser565 is a nearby conserved residue that also contributes to the binding pocket, but a S565G replacement has only a small impact on DNA replication fidelity. When Y567A and S565G replacements were combined, mutator activity was strongly decreased compared to that with Y567A replacement alone. Analyses conducted both in vivo and in vitro revealed that, compared to Y567A replacement alone, the double mutant mainly reduced base substitution mutations and, to a lesser extent, frameshift mutations. The decrease in mutation rates was not due to increased exonuclease activity. Based on measurements of DNA binding affinity, mismatch insertion, and mismatch extension, we propose that the recovered fidelity of the double mutant may result, in part, from an increased dissociation of the enzyme from DNA, followed by the binding of the same or another polymerase molecule in either exonuclease mode or polymerase mode. An additional antimutagenic factor may be a structural alteration in the polymerase binding pocket described in this article.

Download full-text


Available from: Anna Bebenek
  • [Show abstract] [Hide abstract]
    ABSTRACT: The contents of the plenary lectures presented at the Plant and Animal Genome (PAG) meeting in January 2011 are summarized in order to provide some insights into the advances in plant, animal and microbe genome studies as they impact on our understanding of complex biological systems. The areas of biology covered include the dynamics of genome change, biological recognition processes and the new processes that underpin investment in science. This overview does not attempt to summarize the diversity of activities that are covered during the PAG through workshops, posters and the suppliers of cutting-edge technologies, but reviews major advances in specific research areas.
    No preview · Article · Mar 2011 · Functional & Integrative Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3'-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations.
    Full-text · Article · Mar 2011 · Journal of Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Like most phages with double-stranded DNA, phage T4 exits the infected host cell by a lytic process requiring, at a minimum, an endolysin and a holin. Unlike most phages, T4 can sense superinfection (which signals the depletion of uninfected host cells) and responds by delaying lysis and achieving an order-of-magnitude increase in burst size using a mechanism called lysis inhibition (LIN). T4 r mutants, which are unable to conduct LIN, produce distinctly large, sharp-edged plaques. The discovery of r mutants was key to the foundations of molecular biology, in particular to discovering and characterizing genetic recombination in T4, to redefining the nature of the gene, and to exploring the mutation process at the nucleotide level of resolution. A number of r genes have been described in the past 7 decades with various degrees of clarity. Here we describe an extensive and perhaps saturating search for T4 r genes and relate the corresponding mutational spectra to the often imperfectly known physiologies of the proteins encoded by these genes. Focusing on r genes whose mutant phenotypes are largely independent of the host cell, the genes are rI (which seems to sense superinfection and signal the holin to delay lysis), rIII (of poorly defined function), rIV (same as sp and also of poorly defined function), and rV (same as t, the holin gene). We did not identify any mutations that might correspond to a putative rVI gene, and we did not focus on the famous rII genes because they appear to affect lysis only indirectly.
    Full-text · Article · May 2011 · Journal of bacteriology
Show more