Article

Drug-Induced Acute Liver Failure: Results of a U.S. Multicenter, Prospective Study

Department of Medicine, Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425-2900, USA.
Hepatology (Impact Factor: 11.06). 12/2010; 52(6):2065-76. DOI: 10.1002/hep.23937
Source: PubMed

ABSTRACT

Acute liver failure (ALF) due to drug-induced liver injury (DILI), though uncommon, is a concern for both clinicians and patients. The Acute Liver Failure Study Group has prospectively collected cases of all forms of acute liver failure since 1998. We describe here cases of idiosyncratic DILI ALF enrolled during a 10.5-year period. Data were collected prospectively, using detailed case report forms, from 1198 subjects enrolled at 23 sites in the United States, all of which had transplant services. A total of 133 (11.1%) ALF subjects were deemed by expert opinion to have DILI; 81.1% were considered highly likely, 15.0% probable, and 3.8% possible. Subjects were mostly women (70.7%) and there was overrepresentation of minorities for unclear reasons. Over 60 individual agents were implicated, the most common were antimicrobials (46%). Transplant-free (3-week) survival was poor (27.1%), but with highly successful transplantation in 42.1%, overall survival was 66.2%. Transplant-free survival in DILI ALF is determined by the degree of liver dysfunction, specifically baseline levels of bilirubin, prothrombin time/international normalized ratio, and Model for End-Stage Liver Disease scores. Conclusion: DILI is an uncommon cause of ALF that evolves slowly, affects a disproportionate number of women and minorities, and shows infrequent spontaneous recovery, but transplantation affords excellent survival.

  • Source
    • "Over 1100 agents, including drugs and herbs, are recognized to cause liver injury. [4] However, attributing causality is often challenging given the limited clinical laboratory tests to identify specific hepatotoxins. [5] Hepatotoxicity has been previously reported as a serious adverse reaction to dietary supplement consumption; a study of 20 cases of fulminant hepatic failure seen by a liver transplantation service found half of the cases were active or recent users of dietary supplements with known potentially hepatotoxic supplements or herbs, with 7 cases having no other etiology identified. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary supplements are increasingly marketed to and consumed by the American public for a variety of purported health benefits. On 9 September 2013, the Hawaii Department of Health (HDOH) was notified of a cluster of acute hepatitis and fulminant hepatic failure among individuals with exposure to the dietary supplement OxyELITE Pro™ (OEP). HDOH conducted an outbreak investigation in collaboration with federal partners. Physicians were asked to report cases, defined as individuals with acute onset hepatitis of unknown etiology on or after 1 April 2013, a history of weight-loss/muscle-building dietary supplement use during the 60 days before illness onset, and residence in Hawaii during the period of exposure. Reported cases' medical records were reviewed, questionnaires were administered, and a product investigation, including chemical analyses and traceback, was conducted. Of 76 reports, 44 (58%) met case definition; of these, 36 (82%) reported OEP exposure during the two months before illness. No other common supplements or exposures were observed. Within the OEP-exposed subset, two patients required liver transplantation, and a third patient died. Excessive product dosing was not reported. No unique lot numbers were identified; there were multiple mainland distribution points, and lot numbers common to cases in Hawaii were also identified in continental states. Product analysis found consumed products were consistent with labeled ingredients; the mechanism of hepatotoxicity was not identified. We report one of the largest statewide outbreaks of dietary supplement-associated hepatotoxicity. The implicated product was OEP. The increasing popularity of dietary supplements raises the potential for additional clusters of dietary supplement-related adverse events. Copyright © 2015 John Wiley & Sons, Ltd.
    Preview · Article · Nov 2015 · Drug Testing and Analysis
  • Source
    • "Drug-induced Liver Injury (DILI) accounts for approximately 11–13% of acute liver-failure cases in the United States and is the most common cause of death related to this condition (Reuben et al., 2010). It is of extreme importance to detect hepatotoxic candidates as early as possible during the drug development process and before clinical phases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n=40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n=11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n=14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies.
    Full-text · Article · Dec 2013 · Toxicology and Applied Pharmacology
  • Source
    • "Drug-induced liver injury (DILI) is a major reason for drug failures in clinical trials, for withdrawal from the market or 'black box warnings' issued by the US Food and Drug Administration [1,2]. More than 1,000 drugs are suspected to cause liver injury in humans [3,4] and DILI accounts for more than 50% of acute liver failures (ALFs), with acetaminophen (APAP) hepatotoxicity far exceeding other causes of ALF in the United States [5]. It is perplexing that despite vigorous and extensive safety testing, animal studies fail to identify about 50% of drugs causing liver toxicity in clinical trials [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Acetaminophen (APAP) is a commonly used analgesic. However, its use is associated with drug-induced liver injury (DILI). It is a prominent cause of acute liver failure, with APAP hepatotoxicity far exceeding other causes of acute liver failure in the United States. In order to improve its safe use this study aimed to identify individuals at risk for DILI prior to drug treatment by searching for non-genetic serum markers in healthy subjects susceptible to APAP-induced liver injury (AILI). Methods Healthy volunteers (n = 36) received either placebo or acetaminophen at the maximum daily dose of 4 g for 7 days. Blood samples were taken prior to and after APAP treatment. Serum proteomic profiling was done by 2D SDS-PAGE and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Additionally, the proteins C-reactive protein, haptoglobin and hemopexin were studied by quantitative immunoassays. Results One-third of study subjects presented more than four-fold increased alanine transaminase activity to evidence liver injury, while serum proteomics informed on 20 proteins as significantly regulated. These function primarily in acute phase and immune response. Pre-treatment associations included C-reactive protein, haptoglobin isoforms and retinol binding protein being up to six-fold higher in AILI susceptible individuals, whereas alpha1-antitrypsin, serum amyloid A, kininogen and transtyretin were regulated by nearly five-fold in AILI responders. When compared with published findings for steatohepatitis and cases of hepatocellular, cholestatic and mixed DILI, 10 proteins were identified as uniquely associated with risk for AILI, including plasminogen. Notably, this zymogen facilitates macrophage chemotactic migration and inflammatory response as reported for plasminogen-deficient mice shown to be resistant to APAP hepatotoxicity. Finally, analysis of a publicly available database of gene expression profiles of cultures of human hepatocytes treated with drugs labeled as no- (n = 8), low- (n = 45) or most-DILI-concern (n = 39) confirmed regulation of the identified biomarkers to demonstrate utility in predicting risk for liver injury. Conclusions The significant regulation of acute phase reactants points to an important link between AILI and the immune system. Monitoring of serum acute phase reactants prior to drug treatment may contribute to prevention and management of AILI, and may also be of utility for other drugs with known liver liabilities.
    Full-text · Article · Sep 2013 · Genome Medicine
Show more