Article

Recent advances in pulse oximetry

F1000 Medicine Reports 08/2009; 1. DOI: 10.3410/M1-66
Source: PubMed

ABSTRACT

Conventional pulse oximetry uses two wavelengths of light (red and infrared) transmitted through a finger and a photodetector to analyze arterial hemoglobin oxygen saturation and pulse rate. Recent advances in pulse oximetry include: extended analysis of the photo plethysmographic waveform; use of multiple wavelengths of light to quantify methemoglobin, carboxyhemoglobin and total hemoglobin content in blood; and use of electronic processes to improve pulse oximeter signal processing during conditions of low signal-to-noise ratio. These advances have opened new clinical applications for pulse oximeters that will have an impact on patient monitoring and management.

Download full-text

Full-text

Available from: Pekka Talke, Aug 07, 2014
  • Source
    • "In addition , complex algorithms are used to evaluate the shape of each potential pulses and extract useful pulses from noisy signals [39] [40]. Auto-centering and auto-gain routines are applied to the displayed waveforms so as to minimise variations in the displayed signal [41] [42]. Although such signal processing techniques may be useful in certain cases to estimate SpO 2 , it often comes at the expense of losing valuable physiological data [43]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-invasive estimation of arterial oxygen saturation (SpO2) and heart rate using pulse oximeters is widely used in hospitals. Pulse oximeters rely on photoplethysmographic (PPG) signals from a peripherally placed optical sensor. However, pulse oximeters can be less accurate if the sensor site is relatively cold. This research investigates the effects on PPG signal quality of local site temperatures for 20 healthy adult volunteers (24.5 ± 4.1 years of age). Raw PPG data, composed of Infrared (IR) and Red (RD) signals, was obtained from a transmittance finger probe using a custom pulse oximeter (PO) system. Three tests were performed with the subject's hand surface temperature maintained at baseline (29 ± 2 °C), cold (19 ± 2 °C), and warm (33 ± 2 °C) conditions. Median root mean square (RMS) of PPG signal during the Cold test dropped by 54.0% for IR and 30.6% for RD from the baseline values. In contrast, the PPG RMS increased by 64.4% and 60.2% for RD and IR, respectively, during the Warm test. Mean PPG pulse amplitudes decreased by 59.5% for IR and 46.1% for RD in the cold test when compared to baseline, but improved by 70.1% for IR and 59.0% for RD in the warm test. This improvement of up to 4× in signal quality during the warm condition was associated with a closer match (median difference of 1.5%) between the SpO2 values estimated by the PO system and a commercial pulse oximeter. The differences measured in RMS and mean amplitudes for the three tests were statistically significant (p < 0.001). Overall, warm temperatures significantly improve PPG signal quality and SpO2 estimation accuracy. Sensor site temperature is recommended to be maintained near 33 °C for reliable transmittance pulse oximetry.
    Full-text · Article · Jan 2016 · Biomedical Signal Processing and Control
  • Source
    • "Motion rejection is generally achieved using various algorithms for differentiation between pure PPG signals and those contaminated by motion noise, but also through the introduction of improved hardware. Advances in PPG-signal analysis that are not related to pulse oximetry, such as the perfusion index and PPG variability, are also beyond the scope of the current review (see Cannesson and Talke).68 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen saturation in the arterial blood (SaO2) provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD) of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs) or more in 5% of the examinations, which is in accordance with an error of 3%-4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns can be attributed to the empirical calibration process, which is performed on healthy volunteers. Other limitations of pulse oximetry include the presence of dyshemoglobins, which has been addressed by multiwavelength pulse oximetry, as well as low perfusion and motion artifacts that are partially rectified by sophisticated algorithms and also by reflection pulse oximetry.
    Full-text · Article · Jul 2014 · Medical Devices: Evidence and Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.
    No preview · Article · Apr 2011 · Annals of Biomedical Engineering
Show more