In vivo efficacy of sivelestat in combination with pazufloxacin against Legionella pneumonia

Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Experimental Lung Research (Impact Factor: 1.41). 10/2010; 36(8):484-90. DOI: 10.3109/01902141003728874
Source: PubMed


It is important to regulate excessive inflammation when patients with severe infectious disease are treated. Sivelestat sodium hydrate (sivelestat), a neutrophil elastase inhibitor, is used in the treatment of lung injury but its effect on bacterial pneumonia is unknown. The authors examined the efficacy of sivelestat in combination with a fluoroquinolone in a Legionella pneumophila pneumonia mouse model. The combination therapy did not show a significant survival improvement compared to the treatment with fluoroquinolone alone, but reduced bacteria number and inflammatory cells in the early phase. The combination therapy can contribute to treatment of L. pneumophila pneumonia with protecting lungs.

Download full-text


Available from: Yoshihiro Yamamoto
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KRP-109 is a novel specific inhibitor of neutrophil elastase (NE). Various studies suggest that NE inhibitors reduce lung injury associated with systemic inflammatory response syndrome (SIRS). In this study, the efficacy of KRP-109 was examined using a murine model of severe pneumonia induced by Streptococcus pneumoniae (S. pneumoniae). Female mice (CBA/J, aged 5 weeks) were inoculated intranasally with penicillin-susceptible S. pneumoniae (ATCC49619 strain, 2.5 × 10(8) CFU/mouse). KRP-109 (30 or 50 mg/kg) or physiological saline as a control was administered intraperitoneally every 8 h beginning at 8 h after inoculation, and survival rate was evaluated over 7 days. Histopathological and bacteriological analyses of the lung, and bronchoalveolar lavage were performed at 48 h post-infection. The mice treated with KRP-109 (KRP-109 mice) tended to have higher survival rate than those given saline. The lung tissues of the KRP-109 mice had few neutrophils in the alveolar walls and less inflammation. Furthermore, KRP-109 decreased significantly total cell and neutrophil counts, and cytokine levels (interleukin 1β and macrophage inflammatory protein 2) in bronchoalveolar lavage fluid. Viable bacterial numbers in lung were not influenced by treatment of KRP-109. The present results indicate that KRP-109 reduces lung inflammation in a murine model, and that KRP-109 may be useful for the treatment of patients with severe pneumonia.
    Full-text · Article · Aug 2011 · Pulmonary Pharmacology & Therapeutics