Article

Color blindness

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... When choosing a color for your overlay, consider that approximately 8% of males and 0.4% of females are red-green color blind (Albrecht, 2010, also see http://en.wikipedia.org/wiki/Color_blindness). Individuals with red-green color blindness cannot discern between the two colors; both appear yellow-brown. ...
Article
Correlated imaging is the process of imaging a specimen with two complementary modalities and then registering and overlaying the fields obtained in each modality to create a composite view. One of the images is made somewhat transparent, allowing detail in the underlying image to be visible and assisting in the registration of the two images. As an example, an image localizing a specific tissue component by fluorescence may be overlaid atop a TEM image of the same field. The resulting composite image would demonstrate specific ultrastructural features in the high-resolution TEM field, which are colorized in the overlay. Other examples include composites from MicroCT or soft X-ray images overlaid atop light microscopy or TEM images. Automated image registration may be facilitated by a variety of sophisticated computer programs utilized by high-throughput laboratories. This chapter is meant for the more occasional user wishing to align images manually. ImageJ is a public domain, image processing program developed at the National Institutes of Health and is available to anyone as a free download. ImageJ performs marvelously well for the purpose of image registration; therefore, step-by-step instructions are included here. Specimen handling, including fixation and choice of embedding media, is not straightforward for correlative imaging. A step-by-step description of the protocols which work in our laboratory is included for simultaneous localization in LM, EM and micro-CT, as well as maintaining GFP emission in tissue embedded for TEM.
... People with color vision deficiencies experience many limitations in various areas of daily life, e.g., in medical professions (Spalding et al., 2010), while identifying traffic signal colors (Atchison et al., 2003), or while reading figures in publications (Miall, 2007;Ross, 2007;Albrecht, 2010) (see Cole, 2004 for review). However, such a deficiency does not imply the inability to perceive any color. ...
Article
Full-text available
Background: People with color vision deficiencies report numerous limitations in daily life, restricting, for example, their access to some professions. However, they use basic color terms systematically and in a similar manner as people with normal color vision. We hypothesize that a possible explanation for this discrepancy between color perception and behavioral consequences might be found in the gaze behavior of people with color vision deficiency. Methods: A group of participants with color vision deficiencies and a control group performed several search tasks in a naturalistic setting on a lawn. All participants wore a mobile eye-tracking-driven camera with a high foveal image resolution (EyeSeeCam). Search performance as well as fixations of objects of different colors were examined. Results: Search performance was similar in both groups in a color-unrelated search task as well as in a search for yellow targets. While searching for red targets, participants with color vision deficiencies exhibited a strongly degraded performance. This was closely matched by the number of fixations on red objects shown by the two groups. Importantly, once they fixated a target, participants with color vision deficiencies exhibited only few identification errors. Conclusions: In contrast to controls, participants with color vision deficiencies are not able to enhance their search for red targets on a (green) lawn by an efficient guiding mechanism. The data indicate that the impaired guiding is the main influence on search performance, while foveal identification (verification) is largely unaffected by the color vision deficiency.
Article
During human evolution, major changes in our societal conditions and environment took place without sufficient time for concomitant genetic alterations, leading to out of step adaptation and diseases in women. We first discuss recent societal adaptation mismatch (menstrual bleeding; increases in cancers of reproductive organs, endometriosis; mother’s nursing; polycystic ovarian syndrome; transgenerational epigenetic modifications), followed by Darwinian out of step adaptation (labor difficulties; sex chromosomes, human diseases and sex disparity in genomic DNA). We discuss the evolutionary basis of menstrual bleeding, followed by recent increases in cancers of reproductive organs and endometriosis. The importance of breastfeeding by mothers is also emphasized. Earlier onset of menarche, decreased rates of childbirths and breastfeeding resulted in increased number of menstrual cycles in a lifetime, coupled with excess estrogen exposure and incessant ovulation, conditions that increased the susceptibility to mammary and uterine cancers as well as ovarian epithelial cancer and endometriosis. Shorter lactation duration in mothers also contributed to more menstrual cycles. We further discuss the evolutionary basis of the prevalent polycystic ovary syndrome. During the long-term Darwinian evolution, difficulties in childbirth evolved due to a narrowed pelvis, our upright walking and enlarged fetal brain sizes. Because there are 1.5% genomic DNA differences between woman and man, it is of significance to investigate sex-specific human physiology and diseases. In conclusion, understanding out of step adaptation during evolution could allow the prevention and better management of female reproductive dysfunction and diseases.
Article
Full-text available
Color is a central element to scientific communication, but its use comes with the responsibility to ensure universally accessible and accurate data presentation. This short Viewpoint Article aims to sensitize the chemical community to the importance of mindful color choices in scientific illustrations. Color is central to scientific communication, but its use comes with the responsibility to ensure universally accessible and accurate data presentation. This short Viewpoint Article aims to sensitize the chemical community to the importance of mindful color choices in scientific illustrations.
Article
Full-text available
Farbe ist ein zentrales Element in der wissenschaftlichen Kommunikation, jedoch bringt ihre Verwendung die Verantwortung mit sich, eine allgemein zugängliche und akkurate Darstellung von Daten und Zusammenhängen zu gewährleisten. Dieser kurze Viewpoint soll dazu dienen, die chemische Gemeinschaft für die Bedeutung einer bewussten Farbwahl in wissenschaftlichen Illustrationen zu sensibilisieren. Farbe ist von zentraler Bedeutung für die wissenschaftliche Kommunikation, aber ihre Verwendung ist mit der Verantwortung verbunden, eine allgemein zugängliche und genaue Datendarstellung zu gewährleisten.
Article
Visualization of complex data is commonplace in neurophysiology research. Here, we highlight specific perceptual issues related to the ongoing misuse of variations of the rainbow colour scheme, with a particular emphasis on time-frequency decompositions in electrophysiology as an illustrative example. We review the risks of biased interpretation of neurophysiological data in this context, and provide guidelines to improve the use of colour maps to visualise complex, multidimensional data in neurophysiology research.
Article
Full-text available
Nowadays color in scientific visualizations is standard and extensively used to group, highlight or delineate different parts of data in visualizations. The rainbow color map (also known as jet color map) is famous for its appealing use of the full visual spectrum with impressive changes in chroma and luminance. Besides attracting attention, science has for decades criticized the rainbow color map for its non-linear and erratic change of hue and luminance along the data variation. The missed uniformity causes a misrepresentation of data values and flaws in science communication. The rainbow color map is scientifically incorrect and hardly decodable for a considerable number of people due to color vision deficiency (CVD) or other vision impairments. Here we aim to raise awareness of how widely used the rainbow color map still is in hydrology. To this end, we perform a paper survey scanning for color issues in around 1000 scientific publications in three different journals including papers published between 2005 and 2020. In this survey, depending on the journal, 16 %–24 % of the publications have a rainbow color map and around the same ratio of papers (18 %–29 %) uses red–green elements often in a way that color is the only possibility to decode the visualized groups of data. Given these shares, there is a 99.6 % chance to pick at least one visual problematic publication in 10 randomly chosen papers from our survey. To overcome the use of the rainbow color maps in science, we propose some tools and techniques focusing on improvement of typical visualization types in hydrological science. We give guidance on how to avoid, improve and trust color in a proper and scientific way. Finally, we outline an approach how the rainbow color map flaws should be communicated across different status groups in science.
Article
Full-text available
The accurate representation of data is essential in science communication. However, colour maps that visually distort data through uneven colour gradients or are unreadable to those with colour-vision deficiency remain prevalent in science. These include, but are not limited to, rainbow-like and red–green colour maps. Here, we present a simple guide for the scientific use of colour. We show how scientifically derived colour maps report true data variations, reduce complexity, and are accessible for people with colour-vision deficiencies. We highlight ways for the scientific community to identify and prevent the misuse of colour in science, and call for a proactive step away from colour misuse among the community, publishers, and the press.
Chapter
This research focuses on the design process of an effective and efficient dashboard which displays management information for an Electronic Health Record (EHR) in Dutch long-term and chronic healthcare. It presents the actual design and realization of a management dashboard for the YBoard 2.0 system, which is a popular solution on the Dutch market. The design decisions in this investigation were based on human perception and computer interaction theory, in particular Gestalt theory. The empirical interviews with medical professionals supplemented valuable additional insights into what the users wanted to see most of all in a dashboard in their daily practices. This study successfully shows how effective and efficient dashboard design can benefit from theoretical insights related to human perception and computer interaction such as Gestalt theory, in combination with integrated end user requirements from daily practices.
Article
Although color vision deficiency (CVD) is fairly common, it is often not adequately considered when data is presented in color graphics. This study found that CVD tends to be mentioned neither in the author guidelines of psychology journals nor in the standard publication manuals of the field (e.g., the publication manuals of the American Psychological Association and the American Medical Association). To illustrate the relevance of this problem, a panel of scholars with CVD was used to evaluate the color figures in three respected psychological science journals. Results suggested that a substantial proportion of those figures were needlessly confusing for viewers with CVD and could have been easily improved through simple adjustments. Based on prior literature and on feedback from the panelists, recommendations are made for improving the accessibility of graphics in psychology reports.
Article
Brightfield in situ hybridization (BISH) applications have significant advantages over traditional fluorescence in situ hybridization (FISH). BISH slides can be analyzed using a regular microscope while FISH slides require the use of a specialized fluorescence microscope. BISH slides allow observers for correlating the gene status (gene amplifications, gene rearrangements, and gene deletions) and tissue morphology better than FISH slides. Also, BISH slides are ideal for the permanent preservation of gene signals. Furthermore, BISH applications can be optimized using an automated tissue slide processing system. BISH applications are becoming a popular method for clinical examination of gene status for selecting cancer treatments.
Article
Common variation in red-green color vision exists among both normal and color-deficient subjects. Differences at amino acids involved in tuning the spectra of the red and green cone pigments account for the majority of this variation. One source of variation is the very common Ser180Ala polymorphism that accounts for two spectrally different red pigments and that plays an important role in variation in normal color vision as well as in determining the severity of defective color vision. This polymorphism most likely resulted from gene conversion by the green-pigment gene. Another common source of variation is the existence of several types of red/green pigment chimeras with different spectral properties. The red and green-pigment genes are arranged in a head-to-tail tandem array on the X-chromosome with one red-pigment gene followed by one or more green-pigment genes. The high homology between these genes has predisposed the locus to relatively common unequal recombination events that give rise to red/green hybrid genes and to deletion of the green-pigment genes. Such events constitute the most common cause of red-green color vision defects. Only the first two pigment genes of the red/green array are expressed in the retina and therefore contribute to the color vision phenotype. The severity of red-green color vision defects is inversely proportional to the difference between the wavelengths of maximal absorption of the photopigments encoded by the first two genes of the array. Women who are heterozygous for red and green pigment genes that encode three spectrally distinct photopigments have the potential for enhanced color vision.