Bayesian Classification of Multiple Sclerosis Lesions in Longitudinal MRI Using Subtraction Images

Centre for Intelligent Machines, McGill University, Canada.
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 09/2010; 13(Pt 2):290-7. DOI: 10.1007/978-3-642-15745-5_36
Source: PubMed


Accurate and precise identification of multiple sclerosis (MS) lesions in longitudinal MRI is important for monitoring disease progression and for assessing treatment effects. We present a probabilistic framework to automatically detect new, enlarging and resolving lesions in longitudinal scans of MS patients based on multimodal subtraction magnetic resonance (MR) images. Our Bayesian framework overcomes registration artifact by explicitly modeling the variability in the difference images, the tissue transitions, and the neighbourhood classes in the form of likelihoods, and by embedding a classification of a reference scan as a prior. Our method was evaluated on (a) a scan-rescan data set consisting of 3 MS patients and (b) a multicenter clinical data set consisting of 212 scans from 89 RRMS (relapsing-remitting MS) patients. The proposed method is shown to identify MS lesions in longitudinal MRI with a high degree of precision while remaining sensitive to lesion activity.

Download full-text


Available from: Tal Arbel, Mar 28, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intensity normalization is an important pre-processing step in the study and analysis of Magnetic Resonance Images (MRI) of human brains. As most parametric supervised automatic image segmentation and classification methods base their assumptions regarding the intensity distributions on a standardized intensity range, intensity normalization takes on a very significant role. One of the fast and accurate approaches proposed for intensity normalization is that of Nyul and colleagues. In this work, we present, for the first time, an extensive validation of this approach in real clinical domain where even after intensity inhomogeneity correction that accounts for scanner-specific artifacts, the MRI volumes can be affected from variations such as data heterogeneity resulting from multi-site multi-scanner acquisitions, the presence of multiple sclerosis (MS) lesions and the stage of disease progression in the brain. Using the distributional divergence criteria, we evaluate the effectiveness of the normalization in rendering, under the distributional assumptions of segmentation approaches, intensities that are more homogenous for the same tissue type while simultaneously resulting in better tissue type separation. We also demonstrate the advantage of the decile based piece-wise linear approach on the task of MS lesion segmentation against a linear normalization approach over three image segmentation algorithms: a standard Bayesian classifier, an outlier detection based approach and a Bayesian classifier with Markov Random Field (MRF) based post-processing. Finally, to demonstrate the independence of the effectiveness of normalization from the complexity of segmentation algorithm, we evaluate the Nyul method against the linear normalization on Bayesian algorithms of increasing complexity including a standard Bayesian classifier with Maximum Likelihood parameter estimation and a Bayesian classifier with integrated data priors, in addition to the above Bayesian classifier with MRF based post-processing to smooth the posteriors. In all relevant cases, the observed results are verified for statistical relevance using significance tests.
    No preview · Article · Apr 2011 · Medical image analysis
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the ever-increasing amount of anatomical information radiologists have to evaluate for routine diagnoses, computational support that facilitates more efficient education and clinical decision making is highly desired. Despite the rapid progress of image analysis technologies for magnetic resonance imaging of the human brain, these methods have not been widely adopted for clinical diagnoses. To bring computational support into the clinical arena, we need to understand the decision-making process employed by well-trained clinicians and develop tools to simulate that process. In this review, we discuss the potential of atlas-based clinical neuroinformatics, which consists of annotated databases of anatomical measurements grouped according to their morphometric phenotypes and coupled with the clinical informatics upon which their diagnostic groupings are based. As these are indexed via parametric representations, we can use image retrieval tools to search for phenotypes along with their clinical metadata. The review covers the current technology, preliminary data, and future directions of this field. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 15 is July 11, 2013. Please see for revised estimates.
    No preview · Article · Apr 2013 · Annual review of biomedical engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a chronic disease with a progressing and evolving course. Serial imaging with MRI is the mainstay in monitoring and managing MS patients. In this work we demonstrate the performance of a locally developed computer-assisted detection (CAD) software used to track temporal changes in brain MS lesions. CAD tracks changes in T2-bright MS lesions between two time points on a 3D high-resolution isotropic FLAIR MR sequence of the brain acquired at 3 Tesla. The program consists of an image-processing pipeline, and displays scrollable difference maps used as an aid to the neuroradiologist for assessing lesional change. To assess the value of the software we have compared diagnostic accuracy and duration of interpretation of the CAD-assisted and routine clinical interpretations in 98 randomly chosen, paired MR examinations from 88 patients (68 women, 20 men, mean age 43.5, age range 21-75) with a diagnosis of definite MS. The ground truth was determined by a three-expert panel. In case-wise analysis, CAD interpretation showed higher sensitivity than a clinical report (87% vs 77%, respectively). Lesion-wise analysis demonstrated improved sensitivity of CAD over a routine clinical interpretation of 40%-48%. Mean software-assisted interpretation time was 2.7 min. Our study demonstrates the potential of including CAD software in the workflow of neuroradiology practice for the detection of MS lesional change. Automated quantification of temporal change in MS lesion load may also be used in clinical research, e.g., in drug trials.
    Full-text · Article · May 2013
Show more