Age-Related Changes of Regional Pulse Wave Velocity in the Descending Aorta Using Fourier Velocity Encoded M-Mode

Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
Magnetic Resonance in Medicine (Impact Factor: 3.57). 01/2011; 65(1):261-8. DOI: 10.1002/mrm.22590
Source: PubMed


Aortic pulse wave velocity (PWV) is an independent determinant of cardiovascular risk. Although aortic stiffening with age is well documented, the interaction between aging and regional aortic PWV is still a debated question. We measured global and regional PWV in the descending aorta of 56 healthy subjects aged 25-76 years using a one-dimensional, interleaved, Fourier velocity encoded pulse sequence with cylindrical excitation. Repeatability across two magnetic resonance examinations (n = 19) and accuracy against intravascular pressure measurements (n = 4) were assessed. The global PWV was found to increase nonlinearly with age. The thoracic aorta was found to stiffen the most with age (PWV [thoracic, 20-40 years] = 4.7 ± 1.1 m/s; PWV [thoracic, 60-80 years] = 7.9 ± 1.5 m/s), followed by the mid- (PWV [mid-abdominal, 20-40 years] = 4.9 ± 1.3 m/s; PWV [mid-abdominal, 60-80 years] = 7.4 ± 1.9 m/s) and distal abdominal aorta (PWV [distal abdominal, 20-40 years] = 4.8 ± 1.4 m/s; PWV [distal abdominal, 60-80 years] = 5.7 ± 1.4 m/s). Good agreement was found between repeated magnetic resonance measurements and between magnetic resonance PWVs and the gold-standard. Fourier velocity encoded M-mode allowed to measure global and regional PWV in the descending aorta. There was a preferential stiffening of the thoracic aorta with age, which may be due to progressive fragmentation of elastin fibers in this region.

Download full-text


Available from: Martin John Graves, Mar 29, 2014
  • Source
    • "Aortic pulse wave velocity (PWV) is a surrogate measure of aortic stiffness which has been shown to independently predict adverse cardiovascular events and mortality345. Estimation of PWV by cardiovascular magnetic resonance (CMR) has been demonstrated to give good reproducibility in scan-rescan evaluations, with measurements superior to echocardiography[6]. Variations in PWV with age and vascular pathologies have also been re- ported[2,7,8]. However, little is known on how aortic PWV changes with exercise. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulse wave velocity (PWV), a measure of arterial stiffness, has been demonstrated to be an independent predictor of adverse cardiovascular outcomes. This can be derived non-invasively using cardiovascular magnetic resonance (CMR). Changes in PWV during exercise may reveal further information on vascular pathology. However, most known CMR methods for quantifying PWV are currently unsuitable for exercise stress testing. A velocity-sensitive real-time acquisition and evaluation (RACE) pulse sequence was adapted to provide interleaved acquisition of two locations in the descending aorta (at the level of the pulmonary artery bifurcation and above the renal arteries) at 7.8 ms temporal resolution. An automated method was used to calculate the foot-to-foot transit time of the velocity pulse wave. The RACE method was validated against a standard gated phase contrast (STD) method in flexible tube phantoms using a pulsatile flow pump. The method was applied in 50 healthy volunteers (28 males) aged 22–75 years using a MR-compatible cycle ergometer to achieve moderate work rate (38 ± 22 W, with a 31 ± 12 bpm increase in heart rate) in the supine position. Central pulse pressures were estimated using a MR-compatible brachial device. Scan-rescan reproducibility was evaluated in nine volunteers. Phantom PWV was 22 m/s (STD) vs. 26 ± 5 m/s (RACE) for a butyl rubber tube, and 5.5 vs. 6.1 ± 0.3 m/s for a latex rubber tube. In healthy volunteers PWV increased with age at both rest (R 2 = 0.31 p < 0.001) and exercise (R 2 = 0.40, p < 0.001). PWV was significantly increased at exercise relative to rest (0.71 ± 2.2 m/s, p = 0.04). Scan-rescan reproducibility at rest was −0.21 ± 0.68 m/s (n = 9). This study demonstrates the validity of CMR in the evaluation of PWV during exercise in healthy subjects. The results support the feasibility of using this method in evaluating of patients with systemic aortic disease.
    Full-text · Article · Dec 2015 · Journal of Cardiovascular Magnetic Resonance
  • Source
    • "Nevertheless, other studies failed to prove the prognostic value of PWV in elderly populations or subjects with increased arterial stiffness (Megnien, Simon, Denarie, Del-Pino, Gariepy, Segond et al. 1998; Protogerou, Safar, Iaria, Safar, Le Dudal, Filipovsky et al. 2007; Verwoert, Elias-Smale, Rizopoulos, Koller, Steyerberg, Hofman et al. 2012). The rationale behind the limited prognostic value of PWV in the aforementioned studies may be due to: (i) the non-linear association between PWV and compliance as previously suggested (Vardoulis et al. 2012), (ii) the non-linear association between PWV and age (Taviani et al. 2011), or (iii) decrease of blood pressure (BP) in the frailest subjects and BP-dependence of PWV. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aortic stiffness, assessed by carotid-to-femoral pulse wave velocity (PWV), often fails to predict cardiovascular (CV) risk and mortality in the very elderly. This may be due to the non-linear association between PWV and compliance or to blood pressure decrease in the frailest subjects. Total arterial compliance (C T) is the most relevant arterial property regarding CV function, compared to local or regional arterial stiffness. A new method for C T estimation, based on PWV, was recently proposed. We aimed to investigate the value of C T to predict all-cause mortality at the elderly. PWV was estimated in 279 elderly subjects (85.5 ± 7.0 years) who were followed up for a mean period of 12.8 ± 6.3 months. C T was estimated by the formula C T = k × PWV−2; coefficient k is body-size dependent based on previous in silico simulations. Herein, k was adjusted for body mass index (BMI) with a 10 % change in BMI corresponding to almost 11 % change in k. For a reference BMI = 26.2 kg/m2, k = 37. Survivors (n = 185) and non-survivors (n = 94) had similar PWV (14.2 ± 3.6 versus 14.9 ± 3.8 m/s, respectively; p = 0.139). In contrast, non-survivors had significantly lower C T than survivors (0.198 ± 0.128 versus 0.221 ± 0.1 mL/mmHg; p = 0.018). C T was a significant predictor of mortality (p = 0.022, odds ratio = 0.326), while PWV was not (p = 0.202), even after adjustment for gender, mean pressure and heart rate. Age was an independent determinant of C T (p = 0.016), but not of PWV. C T, estimated by a novel method, can predict all-cause mortality in the elderly. C T may be more sensitive arterial biomarker than PWV regarding CV risk assessment.
    Full-text · Article · May 2014 · Age
  • Source
    • "Furthermore, it is known that the aorta stiffens with age. It was shown that global PWV increases in a nonlinear fashion with age and is most pronounced in the thoracic aorta [28], probably because of cumulative degradation of elastin fibers with age [29] that are most abundant in the thoracic part of the aorta. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV), which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR), with invasive pressure measurements serving as the gold standard. Seventeen patients (14 male, 3 female, mean age ± standard deviation = 57 ± 9 years) awaiting cardiac catheterization were prospectively included. During catheterization, intra-arterial pressure measurements were obtained in the aorta at multiple locations 5.8 cm apart. PWV was determined regionally over the aortic arch and locally in the proximal descending aorta. Subsequently, patients underwent a CMR examination to measure aortic PWV and aortic distention. Distensibility was determined locally from the aortic distension at the proximal descending aorta and the pulse pressure measured invasively during catheterization and non-invasively from brachial cuff-assessment. PWV was determined regionally in the aortic arch using through-plane and in-plane velocity-encoded CMR, and locally at the proximal descending aorta using in-plane velocity-encoded CMR. Validity of the Bramwell-Hill model was tested by evaluating associations between distensibility and PWV. Also, theoretical PWV was calculated from distensibility measurements and compared with pressure-assessed PWV. In-plane velocity-encoded CMR provides stronger correlation (p = 0.02) between CMR and pressure-assessed PWV than through-plane velocity-encoded CMR (r = 0.69 versus r = 0.26), with a non-significant mean error of 0.2 ± 1.6 m/s for in-plane versus a significant (p = 0.006) error of 1.3 ± 1.7 m/s for through-plane velocity-encoded CMR. The Bramwell-Hill model shows a significantly (p = 0.01) stronger association between distensibility and PWV for local assessment (r = 0.8) than for regional assessment (r = 0.7), both for CMR and for pressure-assessed PWV. Theoretical PWV is strongly correlated (r = 0.8) with pressure-assessed PWV, with a statistically significant (p = 0.04) mean underestimation of 0.6 ± 1.1 m/s. This theoretical PWV-estimation is more accurate when invasively-assessed pulse pressure is used instead of brachial cuff-assessment (p = 0.03). CMR with in-plane velocity-encoding is the optimal approach for studying Bramwell-Hill associations between local PWV and aortic distensibility. This approach enables non-invasive estimation of local pulse pressure and distensibility.
    Full-text · Article · Jan 2012 · Journal of Cardiovascular Magnetic Resonance
Show more