Mus spretus SEG/Pas mice resist virulent Yersinia pestis, under multigenic control

Institut Pasteur, Mouse Functional Genetics Unit, Paris, France.
Genes and immunity (Impact Factor: 2.91). 01/2011; 12(1):23-30. DOI: 10.1038/gene.2010.45
Source: PubMed


Laboratory mice are well known to be highly susceptible to virulent strains of Yersinia pestis in experimental models of bubonic plague. We have found that Mus spretus-derived SEG/Pas (SEG) mice are exceptionally resistant to virulent CO92 and 6/69 wild type strains. Upon subcutaneous injection of 10(2) colony-forming units (CFU), 90% of females and 68% of males survived, compared with only an 8% survival rate for both male and female C57BL/6 mice. Furthermore, half of the SEG mice survived a challenge of up to 10(7) CFU. The time required for mortality was similar between B6 and SEG, suggesting that survival is dependent on early rather than late processes. The analysis of 322 backcross mice identified three significant quantitative trait loci (QTLs) on chromosomes 3, 4 and 6, with dominant SEG protective alleles. Each QTL increased the survival rate by approximately 20%. The three QTLs function additively, thereby accounting for 67% of the difference between the parental phenotypes. Mice heterozygous for the three QTLs were just as resistant as SEG mice to Y. pestis challenge. The SEG strain therefore offers an invaluable opportunity to unravel mechanisms and underlying genetic factors of resistance against Y. pestis infection.

1 Follower
11 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccines against primary pneumonic plague, a potential bioweapon, must be tested for efficacy in well-characterized nonhuman primate models. Telemetered cynomolgus macaques (Macaca fascicularis) were challenged by the aerosol route with doses equivalent to approximately 100 50% effective doses of Yersinia pestis strain CO92 and necropsied at 24-h intervals postexposure (p.e.). Data for telemetered heart rates, respiratory rates, and increases in the temperature greater than the diurnal baseline values identified the onset of the systemic response at 55 to 60 h p.e. in all animals observed for at least 70 h p.e. Bacteremia was detected at 72 h p.e. by a Yersinia 16S rRNA-specific quantitative reverse transcription-PCR and was detected later by the culture method at the time of moribund necropsy. By 72 h p.e. multilobar pneumonia with diffuse septal inflammation consistent with early bacteremia was established, and all lung tissues had a high bacterial burden. The levels of cytokines or chemokines in serum were not significantly elevated at any time, and only the interleukin-1β, CCL2, and CCL3 levels were elevated in lung tissue. Inhalational plague in the cynomolgus macaque inoculated by the aerosol route produces most clinical features of the human disease, and in addition the disease progression mimics the disease progression from the anti-inflammatory phase to the proinflammatory phase described for the murine model. Defined milestones of disease progression, particularly the onset of fever, tachypnea, and bacteremia, should be useful for evaluating the efficacy of candidate vaccines.
    Full-text · Article · Apr 2010 · Infection and immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attenuated Yersinia pestis pgm strains, such as KIM5, lack the siderophore yersiniabactin. Strain KIM5 does not induce significant pneumonia when delivered intranasally. In this study, mice were found to develop pneumonia after intranasal challenge with strain KIM5 when they were injected intraperitoneally with iron dextran, though not with iron sulfate. KIM5-infected mice treated daily with 4 mg iron dextran died in 3 days with severe pneumonia. Pneumonia was less severe if 4 mg iron dextran was administered only once before infection. The best-studied experimental vaccine against plague currently consists of the Yersinia pestis capsular antigen F1 and the type 3 secreted protein LcrV. The F1 antigen was shown to be protective against KIM5 infections in mice administered iron dextran doses leading to light or severe pneumonia, supporting the use of an iron dextran-treated model of pneumonic plague. Since F1 has been reported to be incompletely protective in some primates, and bacterial isolates lacking F1 are still virulent, there has been considerable interest in identifying additional protective subunit immunogens. Here we showed that the highly conserved Psa fimbriae of Y. pestis (also called pH 6 antigen) are expressed in murine organs after infection through the respiratory tract. Studies with iron dextran-treated mice showed that vaccination with the Psa fimbrial protein together with an adjuvant afforded incomplete but significant protection in the mouse model described. Therefore, further investigations to fully characterize the protective properties of the Psa fimbriae are warranted.
    Full-text · Article · May 2010 · Infection and immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia pestis is the causative agent of pneumonic plague; recently, we and others reported that during the first 24-36 hours after pulmonary infection with Y. pestis pro-inflammatory cytokine expression is undetectable in lung tissues. Here, we report that, intranasal infection of mice with CO92 delta yopH mutant results in an early pro-inflammatory response in the lungs characterized by an increase in the pro-inflammatory cytokines Tumor Necrosis Factor-alpha and Interleukin one-beta 24 hours post-infection. CO92 delta yopH colonizes the lung but does not disseminate to the liver or spleen and is cleared from the host within 72 hours post-infection. This is different from what is observed in a wild-type CO92 infection, where pro-inflammatory cytokine expression and immune cell infiltration into the lungs is not detectable until 36-48 h post-infection. CO92 rapidly disseminates to the liver and spleen resulting in high bacterial burdens in these tissues ultimately cumulating in death 72-94 h post-infection. Mice deficient in TNF-alpha are more susceptible to CO92 delta yopH infection with 40% of the mice succumbing to infection. Altogether, our results suggest that YopH can inhibit an early pro-inflammatory response in the lungs of mice and that this is an important step in the pathogenesis of infection.
    Full-text · Article · Jun 2010 · BMC Immunology
Show more