High Viral Fitness during Acute HIV-1 Infection

National Serology Reference Laboratory, St Vincent's Institute, Melbourne, Victoria, Australia.
PLoS ONE (Impact Factor: 3.23). 09/2010; 5(9). DOI: 10.1371/journal.pone.0012631
Source: PubMed


Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection.

Download full-text


Available from: Kim Wilson
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the first immunologic responses against HIV infection is the presence of neutralizing antibodies that seem able to inactivate several HIV strains. Moreover, in vitro studies have shown the existence of monoclonal antibodies that exhibit broad crossclade neutralizing potential. Yet their number is low and slow to develop in vivo. In this paper, we investigate the potential benefits of inducing poly-specific neutralizing antibodies in vivo throughout immunization. We develop a mathematical model that considers the activation of families of B lymphocytes producing poly-specific and strain-specific antibodies and use it to demonstrate that, even if such families are successful in producing neutralizing antibodies, the competition between them may limit the poly-specific response allowing the virus to escape. We modify this model to account for viral evolution under the pressure of antibody responses in natural HIV infection. The model can reproduce viral escape under certain conditions of B lymphocyte competition. Using these models we provide explanations for the observed antibody failure in controlling natural infection and predict quantitative measures that need to be satisfied for long-term control of HIV infection.
    Full-text · Article · Feb 2011 · Journal of Theoretical Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Partial control of HIV occurs during acute infection, although the mechanisms responsible are poorly understood. We studied the ability of antibody-dependent cellular cytotoxicity (ADCC) antibodies in serum to activate natural killer (NK) cells in longitudinal samples from 8 subjects with well-defined early HIV infection who controlled viremia to low levels. NK cell activation by ADCC antibodies to gp140 Env proteins was detected in half of the subjects at the first time point studied, a mean of 111 d after the estimated time of infection. In contrast, ADCC-mediated NK cell activation in response to linear HIV peptides evolved more slowly, over the first 2 y of infection. Our studies suggest that HIV-specific ADCC responses to conformational epitopes occur early during acute HIV infection, and broaden to include linear epitopes over time. These findings have implications for the immune control of HIV.
    Preview · Article · Apr 2011 · Viral immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic robustness is a highly sought after goal for synthetic biology. There are many well-studied examples of robust systems in biology, and for the advancement of synthetic biology, particularly in performance-critical applications, fundamental understanding of how robustness is both achieved and maintained is very important. A synthetic circuit may fail to behave as expected for a multitude of reasons, and since many of these failures are difficult to predict a priori, a better understanding of a circuit's behavior as well as its possible failures are needed. In this chapter, we outline work that has been done in developing design principles for robust synthetic circuits, as well as sharing our experiences designing and constructing gene circuits.
    No preview · Article · Dec 2011 · Methods in enzymology
Show more