Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates

Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
Nanoscale (Impact Factor: 7.39). 08/2010; 2(8):1423-5. DOI: 10.1039/c0nr00228c
Source: PubMed


We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.

Download full-text


Available from: Anumol Ashok, Nov 24, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoporous structures are widely used for many applications and hence it is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple closed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.
    Full-text · Article · Mar 2011 · ACS Nano
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces.
    Full-text · Article · Sep 2011 · Nanoscale
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoporous palladium and palladium alloys are expected to have improved mass transport rates and cycle life compared to bulk materials for energy storage and other applications due to high ratios of surface area to metal volume. Preparation of such materials with high thermal stability and well-controlled metal composition, however, remains a challenge. This work describes a scalable, bottom-up technique for preparing nanoporous palladium alloys based on partial consolidation of dendrimer-encapsulated nanoparticles (DEN). Destabilization of a colloidal suspension of DEN and purification yields high surface area material (60-80 m(2) g(-1)) with a broad pore size distribution centered between 20 and 50 nm. This approach allows for precise tuning of product composition through adjustment of the composition of the precursor DEN. Nanoporous Pd0.9Rh0.1 alloys with uniform composition or with Rh enrichment at pore walls and grain boundaries have been prepared and these structures have been confirmed with high-spatial resolution, aberration corrected quantitative STEM-EDS. Compared to bulk alloys of the same nominal composition, the nanoporous bimetallics show much faster hydrogen uptake kinetics, and store hydrogen at much lower pressure. Pore structure remains intact to temperatures above 300 degrees C, suggesting that these materials will have long lifetimes at the temperatures used for hydrogen storage applications.
    No preview · Article · Jul 2012 · Journal of Materials Chemistry
Show more