Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique

ArticleinBiofabrication 1(2):025003 · June 2009with22 Reads
Impact Factor: 4.29 · DOI: 10.1088/1758-5082/1/2/025003 · Source: PubMed

    Abstract

    After the removal of the giant cell tumor (GCT) of bone, it is necessary to fill the defects with adequate biomaterials. A new functional bone repair material with both stimulating osteoblast growth and inhibiting osteoclast activity has been developed with phosphorylated chitosan (P-chitosan) and disodium (1 --> 4)-2-deoxy-2-sulfoamino-beta-D-glucopyranuronan (S-chitosan) as the additives of poly(lactic acid-co-glycolic acid) (PLGA)/calcium phosphate (TCP) scaffolds based on a double-nozzle low-temperature deposition manufacturing technique. A computer-assisted design model was used and the optimal fabrication parameters were determined through the manipulation of a pure PLGA/TCP system. The microscopic structures, water absorbability and mechanical properties of the samples with different P-chitosan and S-chitosan concentrations were characterized correspondingly. The results suggested that this unique composite porous scaffold material is a potential candidate for the repair of large bone defects after a surgical removal of GCT.