A wide angle view of the Sagittarius dwarf Spheroidal Galaxy. I: VIMOS photometry and radial velocities across Sgr dSph major and minor axis

Astronomy and Astrophysics (Impact Factor: 4.38). 11/2009; 513(12). DOI: 10.1051/0004-6361/200913331
Source: arXiv


The Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) provides us with a unique possibility of studying a dwarf galaxy merging event while still in progress. Due to its low distance (25 kpc), the main body of Sgr dSph covers a vast area in the sky (roughly 15 x 7 degrees). Available photometric and spectroscopic studies have concentrated either on the central part of the galaxy or on the stellar stream, but the overwhelming majority of the galaxy body has never been probed. The aim of the present study is twofold. On the one hand, to produce color magnitude diagrams across the extension of Sgr dSph to study its stellar populations, searching for age and/or composition gradients (or lack thereof). On the other hand, to derive spectroscopic low-resolution radial velocities for a subsample of stars to determine membership to Sgr dSph for the purpose of high resolution spectroscopic follow-up. We used VIMOS-VLT to produce V and I photometry and spectroscopy on 7 fields across the Sgr dSph minor and major axis, plus 3 more centered on the associated globular clusters Terzan 7, Terzan 8 and Arp 2. A last field has been centered on M 54, lying in the center of Sgr dSph. We present photometry for 320,000 stars across the main body of Sgr dSph, one of the richest, and safely the most wide-angle sampling ever produced for this fundamental object. We also provide robust memberships for more than one hundred stars, whose high resolution spectroscopic analysis will be the object of forthcoming papers. Sgr dSph appears remarkably uniform among the observed fields. We confirm the presence of a main Sgr dSph population characterized roughly by the same metallicity of 47 Tuc, but we also found the presence of multiple populations on the peripheral fields of the galaxy, with a metallicity spanning from [Fe/H]=-2.3 to a nearly solar value. Comment: 10 pages, 12 figures, accepted for publication in A&A

Download full-text


Available from: Simone Zaggia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homogeneous abundances of light elements, a-elements, and Fe-group elements from high-resolution FLAMES spectra are presented for 76 red giant stars in NGC 6715 (M 54), a massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf galaxy. We also derived detailed abundances for 27 red giants belonging to the Sgr nucleus. Our abundances measure the intrinsic metallicity dispersion (similar to 0.19 dex, rms scatter) of M 54, with the bulk of stars peaking at [Fe/H] similar to -1.6 and a long tail extending to higher metallicities, similar to omega Cen. The spread in these probable nuclear star clusters exceeds those of most GCs: these massive clusters are located in a region intermediate between normal GCs and dwarf galaxies. The GC M 54 exibits a Na-O anticorrelation, a typical signature of GCs, which is instead absent for the Sgr nucleus. The light elements (Mg, Al, Si) participating in the high temperature Mg-Al cycle show that the entire pattern of (anti) correlations produced by proton-capture reactions in H-burning is clearly different between the most metal-rich and most metal-poor components in the two most massive GCs in the Galaxy, confirming early results based on the Na-O anticorrelation. As in omega Cen, stars affected by most extreme processing, i.e. showing the signature of more massive polluters, are those of the metal-rich component. These observations can be understood if the burst of star formation giving birth to the metal-rich component was delayed by as much as 10-30 Myr with respect to the metal-poor one. The evolution of these massive GCs can be easily reconciled in the general scenario for the formation of GCs sketched previously by ourselves, taking into account that omega Cen may have already incorporated the surrounding nucleus of its progenitor and lost the remainder of the hosting galaxy while the two are still observable as distinct components in M 54 and the surrounding field.
    Full-text · Article · Jun 2010 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We trace the tidal Stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) using Red Clump stars from the catalog of the Sloan Digital Sky Survey - Data Release 6, in the range 150{\deg} < RA < 220{\deg}, corresponding to the range of orbital azimuth 220{\deg} < Lambda < 290{\deg}. Substructures along the line of sight are identified as significant peaks in the differential star count profiles (SCP) of candidate Red Clump stars. A proper modeling of the SCPs allows us to obtain: (a) <10% accurate, purely differential distances with respect to the main body of Sgr, (b) estimates of the FWHM along the line of sight, and (c) estimates of the local density, for each detected substructure. In the range 255{\deg} < Lambda < 290{\deg} we cleanly and continuously trace various coherent structures that can be ascribed to the Stream, in particular: the well known northern portion of the leading arm, running from d~43 kpc at Lambda ~ 290{\deg} to d ~ 30 kpc at Lambda ~ 255{\deg}, and a more nearby coherent series of detections lying at constant distance d ~ 25 kpc, that can be identified with a wrap of the trailing arm. The latter structure, predicted by several models of the disruption of Sgr dSph, was never traced before; comparison with existing models indicates that the difference in distance between these portions of the leading and trailing arms may provide a powerful tool to discriminate between theoretical models assuming different shapes of the Galactic potential. A further, more distant wrap in the same portion of the sky is detected only along a couple of lines of sight.[abridged] Comment: 31 pages, 28 figures, accepted for publication in the Astrophysical Journal, a version with figures at full resolution can be downloaded at the following URL:
    Preview · Article · Jul 2010 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using VIMOS in imaging and spectroscopy modes and FLAMES spectroscopy data, we have mapped the Sagittarius dwarf spheroidal galaxy (Sgr dSph) photometrically and spectroscopically over eight fields along the galaxy minor and major axes. We have found, for the first time, striking evidence of multiple populations in the peripheral zones of this near companion of the Milky Way. These data, together with previous analyses of the Sgr dSph core and streams, supply a detailed picture of this galaxy, and will give us the opportunity to reconstruct the history of this object and its influence on the evolution of the Milky Way.
    Full-text · Article · Sep 2010
Show more