Oxygen lines in solar granulation. II. Centre-to-limb variation, NLTE line formation, blends and the solar oxygen abundance

Article (PDF Available)inAstronomy and Astrophysics 508(3) · September 2009with26 Reads
DOI: 10.1051/0004-6361/200912840 · Source: arXiv
Abstract
Context: There is a lively debate about the solar oxygen abundance and the role of 3D models in its recent downward revision. The models have been tested using high resolution solar atlases. Further testing can be done using centre-to-limb variations. Aims: Using high quality observations of oxygen lines across the solar surface we seek to test if the 3D and 1D models reproduce their observed centre-to-limb variation (CLV). In particular we seek to assess whether the 3D model is appropriate to derive the solar oxygen abundance. Methods: We use our recent observations of OI 777 nm, OI 615.81 nm, [OI] 630.03 nm and nine lines of other elements for five viewing angles 0.2<mu<1 of the quiet solar disk. We compare them with the predicted line profiles from the 3D and 1D models computed using the most up-to-date line formation codes, line data and allowing for departures of LTE. The CLV of the OI 777 nm lines is also used to obtain an empirical correction for the poorly known efficiency of the inelastic collisions with H. Results: The 3D model generally reproduces the CLV observations of the lines very well, particularly the oxygen lines. From the OI 777 nm lines we find that the classical Drawin recipe slightly overestimates H collisions. The limb observations of the OI 615.82 nm line allow us to identify a previously unknown contribution of molecules for this line, prevalent at the solar limb. A detailed treatment of the [OI] 630.03 nm line shows that the 3D modeling provides an excellent agreement with the observations. The derived oxygen abundances with the 3D model are 8.68 (OI 777 nm), 8.66 ([OI] 630.03 nm) and 8.62 (OI 615.82 nm). Conclusions: These additional tests have reinforced the trustworthiness of the 3D model and line formation for abundance analyses. Comment: 15 pages, 12 figures, accepted for publication in A&A

Full-text (PDF)

Available from: Dan Kiselman, Aug 21, 2014
Other full-text sources