Inhibitors of Leucine Rich Repeat Kinase 2 (LRRK2) Protect Against LRRK2-Models of Parkinson’s Disease

Johns Hopkins University, Baltimore, Maryland, United States
Nature medicine (Impact Factor: 27.36). 09/2010; 16(9):998-1000. DOI: 10.1038/nm.2199
Source: PubMed


Leucine-rich repeat kinase-2 (LRRK2) mutations are a common cause of Parkinson's disease. Here we identify inhibitors of LRRK2 kinase that are protective in in vitro and in vivo models of LRRK2-induced neurodegeneration. These results establish that LRRK2-induced degeneration of neurons in vivo is kinase dependent and that LRRK2 kinase inhibition provides a potential new neuroprotective paradigm for the treatment of Parkinson's disease.

Download full-text


Available from: Howard Federoff
  • Source
    • "Several potent, non-selective tool compounds, including staurosporine (LRRK2: IC 50 ¼ 1e2 nM) [13], sunitinib (LRRK2: IC 50 ¼ 79 nM) [14] and ROCK inhibitor H-1152 (LRRK2: IC 50 ¼ 244 nM) [14] provided preliminary support for LRRK2 inhibition as a potential therapeutic option for PD. Subsequent studies focused on developing inhibitors selective for LRRK2. "
    [Show abstract] [Hide abstract]
    ABSTRACT: LRRK2IN1 is a highly potent inhibitor of leucine-rich repeat kinase 2 (LRRK2, IC50 = 7.9 nM), an established target for treatment of Parkinson's disease. Two LRRK2IN1 analogues 1 and 2 were synthesised which retained LRRK2 inhibitory activity (1: IC50 = 72 nM; 2: IC50 = 51 nM), were predicted to have improved bioavailability and were efficacious in cell-based models of neuroinflammation. Analogue 1 inhibited IL-6 secretion from LPS-stimulated primary human microglia with EC50 = 4.26 μM. In order to further optimize the molecular properties of LRRK2IN1, a library of truncated analogues was designed based on docking studies. Despite lacking LRRK2 inhibitory activity, these compounds show anti-neuroinflammatory efficacy at micromolar concentration. The compounds developed were valuable tools in establishing a cell-based assay for assessing anti-neuroinflammatory efficacy of LRRK2 inhibitors. Herein, we present data that IL-1β stimulated U87 glioma cell line is a reliable model for neuroinflammation, as data obtained in this model were consistent with results obtained using primary human microglia and astrocytes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
    Full-text · Article · May 2015 · European Journal of Medicinal Chemistry
    • "). Collectively, the observations in the adenoviral and HSV rodent models of G2019S LRRK2- dependent neurodegenerative changes support a critical role for kinase activity (Dusonchet et al., 2011; Lee et al., 2010). The contribution of GTPase activity and additional PD-associated mutations (i.e. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 contains functional GTPase and kinase domains. The most common G2019S mutation enhances the kinase activity of LRRK2 in vitro whereas G2019S LRRK2 expression in cultured neurons induces toxicity in a kinase-dependent manner. These observations suggest a potential role for kinase activity in LRRK2-associated PD. We have recently developed a novel rodent model of PD with progressive neurodegeneration induced by the adenoviral-mediated expression of G2019S LRRK2. In the present study, we further characterize this LRRK2 model and determine the contribution of kinase activity to LRRK2-mediated neurodegeneration. Recombinant human adenoviral vectors were employed to deliver human wild-type, G2019S or kinase-inactive G2019S/D1994N LRRK2 to the rat striatum. LRRK2-dependent pathology was assessed in the striatum, a region where LRRK2 protein is normally enriched in the mammalian brain. Human LRRK2 variants are robustly expressed throughout the rat striatum. Expression of G2019S LRRK2 selectively induces the accumulation of neuronal ubiquitin-positive inclusions accompanied by neurite degeneration and the altered distribution of axonal phosphorylated neurofilaments. Importantly, the introduction of a kinase-inactive mutation (G2019S/D1994N) completely ameliorates the pathological effects of G2019S LRRK2 in the striatum supporting a kinase activity-dependent mechanism for this PD-associated mutation. Collectively, our study further elucidates the pathological effects of the G2019S mutation in the mammalian brain and supports the development of kinase inhibitors as a potential therapeutic approach for treating LRRK2-associated PD. This adenoviral rodent model provides an important tool for elucidating the molecular basis of LRRK2-mediated neurodegeneration. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Feb 2015 · Neurobiology of Disease
  • Source
    • "Also, PD patients carrying the LRRK2 mutations show a clinical and neuropathological profile which is indistinguishable from sporadic PD, indicating that LRRK2 may contribute to a PD pathway common to both familial and sporadic PD (Healy et al., 2008). The kinase activity of LRRK2 has been proposed as a promising target for developing disease modifying therapy for PD (Greggio and Singleton, 2007; Vancraenenbroeck et al., 2011; Lee et al., 2012) and deletion of LRRK2 kinase activity has been shown to be protective in cellular (Greggio et al., 2006; Smith et al., 2006) or in vivo models (Lee et al., 2010; Yao et al., 2013) of LRRK2 mediated toxicity. Currently, several compounds have been reported that are capable of inhibiting LRRK2 kinase activity (reviewed previously; Vancraenenbroeck et al., 2011; Deng et al., 2012; Kramer et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Leucine-rich repeat kinase 2 (LRRK2) is a complex, multidomain protein which is considered a valuable target for potential disease-modifying therapeutic strategies for Parkinson’s disease. In mammalian cells and brain, LRRK2 is phosphorylated and treatment of cells with inhibitors of LRRK2 kinase activity can induce LRRK2 dephosphorylation at a cluster of serines including Ser910/935/955/973. It has been suggested that phosphorylation levels at these sites reflect LRRK2 kinase activity, however kinase-dead variants of LRRK2 or kinase activating variants do not display altered Ser935 phosphorylation levels compared to wild type. Furthermore, Ser910/935/955/973 are not autophosphorylation sites, therefore, it is unclear if inhibitor induced dephosphorylation depends on the activity of compounds on LRRK2 or on yet to be identified upstream kinases. Here we used a panel of 160 ATP competitive and cell permeable kinase inhibitors directed against all branches of the kinome and tested their activity on LRRK2 in vitro using a peptide-substrate-based kinase assay. In neuronal SH-SY5Y cells overexpressing LRRK2 we used compound-induced dephosphorylation of Ser935 as readout. In silico docking of selected compounds was performed using a modelled LRRK2 kinase structure. Receiver operating characteristic plots demonstrated that the obtained docking scores to the LRRK2 ATP binding site correlated with in vitro and cellular compound activity. We also found that in vitro potency showed a high degree of correlation to cellular compound induced LRRK2 dephosphorylation activity across multiple compound classes. Therefore, acute LRRK2 dephosphorylation at Ser935 in inhibitor treated cells results from compound activity on the LRRK2 ATP-binding pocket itself. Understanding the regulation of LRRK2 phosphorylation by kinase inhibitors aids our understanding of LRRK2 signaling and may lead to development of new classes of LRRK2 kinase inhibitors.
    Full-text · Article · May 2014 · Frontiers in Molecular Neuroscience
Show more