Acetyl-L-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Free Radical Biology and Medicine (Impact Factor: 5.74). 11/2010; 49(10):1494-504. DOI: 10.1016/j.freeradbiomed.2010.08.011
Source: PubMed


The studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to mice caused an increase in inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine adduct formation in frontal cortical neurons but not in astrocytes from brains of these animals. Interestingly, alcohol administration caused a rather selective activation of NADPH oxidase (NOX), which, in turn, enhanced levels of reactive oxygen species (ROS) and 4-hydroxynonenal, but these were predominantly localized in astrocytes and microglia. Oxidative damage in glial cells was accompanied by their pronounced activation (astrogliosis) and coincident neuronal loss, suggesting that inflammation in glial cells caused neuronal degeneration. Immunohistochemistry studies indicated that alcohol consumption induced different oxidative mediators in different brain cell types. Thus, nitric oxide was mostly detected in iNOS-expressing neurons, whereas ROS were predominantly generated in NOX-expressing glial cells after alcohol ingestion. Assessment of neuronal activity in ex vivo frontal cortical brain tissue slices from ethanol-fed mice showed a reduction in long-term potentiation synaptic transmission compared with slices from controls. Coadministration of ALC with alcohol showed a significant reduction in oxidative damage and neuronal loss and a restoration of synaptic neurotransmission in this brain region, suggesting that ALC protects brain cells from ethanol-induced oxidative injury. These findings suggest the potential clinical utility of ALC as a neuroprotective agent that prevents alcohol-induced brain damage and development of neurological disorders.

Download full-text


Available from: P. M. Abdul Muneer
  • Source
    • "Thus, tissue injury or toxicity in the brain will occur in those cell types that express the ethanol metabolizing or the radical generating enzymes. We have shown the induction of CYP2E1 by ethanol in human brain endothelial cells, astrocyte, neurons and macrophage [5], [6], [7], [8]. Recently, Jin et al. (2013) demonstrated the regulation of CYP2E1 expression and oxidative stress-mediated signaling pathway in astrocytic and monocytic cell lines [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "These results were similar to the report by Dong et al. (2009) who found that PCP could induce apoptosis in primary hepatocytes of goldfish (Carassius carassius), which might be because these chlorophenols have same target points. ALC, an acetylated derivative of l-carnitine, has been shown to protect cells from oxidative injury (Rump et al., 2010), suppress the oxidative stress in and around mitochondria, and finally prevent the mitochondrial signaling pathway which leads to apoptosis (Zhu et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: 2,4-Dichlorophenol (2,4-DCP), a major type of chlorophenols, has been widely used to produce some herbicides and pharmaceuticals, yet due to its incomplete degradation and bioaccumulation characteristics, it is toxic to aquatic organisms. Apoptosis is one of the most severe outcomes of cell poisoning and injury. So far, the potential molecular mechanism of 2,4-DCP-induced apoptosis has not been reported. This study showed that 2,4-DCP significantly induced apoptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella). 2,4-DCP exposure upregulated mRNA of caspase-3, reduced the mitochondrial membrane potential (Δψm), increased intracellular reactive oxygen species (ROS) and the Bax/Bcl-2 ratio, while protection of mitochondria with acetyl-l-carnitine hydrochloride (ALC) rescued 2,4-DCP-induced apoptosis, restored the Δψm and reduced the Bax/Bcl-2 ratio. Taken together, this is the first study that has identified that 2,4-DCP exposure induced apoptosis through the mitochondria-dependent pathway in primary hepatocytes of grass carp.
    Full-text · Article · May 2013 · Aquatic toxicology (Amsterdam, Netherlands)
  • Source
    • "Studies of neurons and glia exposed to alcohol in culture have shown a variable response, including increases in the generation of reactive oxygen species, prostaglandins [14], and NFkB DNA-binding [21] that has been purported to be both injurious to and protective of central nervous system cells [67]. In vivo studies have worked to clarify these seemingly contradictory findings, and suggest that these consequences are largely proinflammatory and injurious; following long-term alcohol exposure, murine frontal cortex samples have increased expression of NOS-2, ionized calcium binding adaptor molecule 1 (Iba1), and 3-nitrotyrosine protein adduct levels consistent with tissue injury [68], and demonstrate sustained increases in the production of TNF-α, MCP-1 and Il-1β in the brain following intraperitoneal LPS injection without direct CNS injury, confirming a proinflammatory state [4]. While direct studies of withdrawal are limited, Brown and colleagues showed that in hippocampal-entorhinal cortical slice cultures, repeated cycles of exposure and withdrawal led to increased neural damage that could be partially inhibited by treatment with the PLA2-inhibitor mepacrine and the anti-inflammatory lipid docosahexaenoic acid [35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic alcohol use changes the brain's inflammatory state. However, there is little work examining the progression of the cytokine response during alcohol withdrawal, a period of profound autonomic and emotional upset. This study examines the inflammatory response in the central nucleus of the amygdala (CeA) and dorsal vagal complex (DVC), brain regions neuroanatomically associated with affective and cardiorespiratory regulation in an in vivo rat model of withdrawal following a single chronic exposure. For qRT-PCR studies, we measured the expression of TNF-α, NOS-2, Ccl2 (MCP-1), MHC II invariant chain CD74, and the TNF receptor Tnfrsf1a in CeA and DVC samples from adult male rats exposed to a liquid alcohol diet for thirty-five days and in similarly treated animals at four hours and forty-eight hours following alcohol withdrawal. ANOVA was used to identify statistically significant treatment effects. Immunohistochemistry (IHC) and confocal microscopy were performed in a second set of animals during chronic alcohol exposure and subsequent 48-hour withdrawal. Following a chronic alcohol exposure, withdrawal resulted in a statistically significant increase in the expression of mRNAs specific for innate immune markers Ccl2, TNF-α, NOS-2, Tnfrsf1a, and CD74. This response was present in both the CeA and DVC and most prominent at 48 hours. Confocal IHC of samples taken 48 hours into withdrawal demonstrate the presence of TNF-α staining surrounding cells expressing the neural marker NeuN and endothelial cells colabeled with ICAM-1 (CD54) and RECA-1, markers associated with an inflammatory response. Again, findings were consistent in both brain regions. This study demonstrates the rapid induction of Ccl2, TNF-α, NOS-2, Tnfrsf1a and CD74 expression during alcohol withdrawal in both the CeA and DVC. IHC dual labeling showed an increase in TNF-α surrounding neurons and ICAM-1 on vascular endothelial cells 48 hours into withdrawal, confirming the inflammatory response at the protein level. These findings suggest that an abrupt cessation of alcohol intake leads to an acute central nervous system (CNS) inflammatory response in these regions that regulate autonomic and emotional state.
    Full-text · Article · May 2012 · Journal of Neuroinflammation
Show more