Involvement of Caveolin-1 in Repair of DNA Damage through Both Homologous Recombination and Non-Homologous End Joining

Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America.
PLoS ONE (Impact Factor: 3.23). 08/2010; 5(8):e12055. DOI: 10.1371/journal.pone.0012055
Source: PubMed


Caveolin-1 (Cav-1), the major component of caveolae, is a 21-24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis.
In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency.
Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity.

Download full-text


Available from: Zui Pan, Dec 19, 2014
  • Source
    • "Caveolin-1 was recently shown to modulate the cellular response to DNA damage by regulating both homologous recombination (HR) and non-homologous end joining (NHEJ) repair pathways [38]. Interestingly, Ku70 was originally discovered as a molecule involved in the repair of DNA double-strand breaks by non-homologous end joining (NHEJ). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1, the structural protein component of caveolae, acts as a scaffolding protein that functionally regulates signaling molecules. We show that knockdown of caveolin-1 protein expression enhances chemotherapeutic drug-induced apoptosis and inhibits long-term survival of colon cancer cells. In vitro studies demonstrate that caveolin-1 is a novel Ku70-binding protein, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101) to the caveolin-binding domain (CBD) of Ku70 (amino acids 471-478). Cell culture data show that caveolin-1 binds Ku70 after treatment with chemotherapeutic drugs. Mechanistically, we found that binding of caveolin-1 to Ku70 inhibits the chemotherapeutic drug-induced release of Bax from Ku70, activation of Bax, translocation of Bax to mitochondria and apoptosis. Potentiation of apoptosis by knockdown of caveolin-1 protein expression is greatly reduced in the absence of Bax expression. Finally, we found that overexpression of wild type Ku70, but not a mutant form of Ku70 that cannot bind to caveolin-1 (Ku70 Φ→A), limits the chemotherapeutic drug-induced Ku70/Bax dissociation and apoptosis. Thus, caveolin-1 acts as an anti-apoptotic protein in colon cancer cells by binding to Ku70 and inhibiting Bax-dependent cell death.
    Full-text · Article · Sep 2012 · PLoS ONE
  • Source
    • "This leads to nuclear localization and to control of DNA-PK activity (Dittmann et al., 2008). Caveolin-1 expression has been demonstrated to be up regulated by ionizing radiation and is required for both homologous recombination and non-homologous end joining (Zhu et al., 2010). In this case, caveolin-1 is pivotal in forming the caveolar vesicles that allow transport of the EGFR, and nuclear DNA-PK activation. "

    Full-text · Chapter · Feb 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.
    No preview · Article · Mar 2011 · Toxicology and Applied Pharmacology
Show more