Article

Involvement of the gut microbiota in the development of low grade inflammation associated with obesity: Focus on this neglected partner

Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium.
Acta gastro-enterologica Belgica (Impact Factor: 0.91). 04/2010; 73(2):267-9.
Source: PubMed

ABSTRACT

Nowadays, the literature provides evidence that obesity, type 2 diabetes and insulin resistance are characterized by a low grade inflammation. Among the environmental factors involved in such diseases, the gut microbiota has been proposed as a key player. This neglected "organ" has been found to be different between healthy and or obese and type 2 diabetic patients. For example, recent data have proposed that dysbiosis of gut microbiota (at phyla, genus, or species level) affects host metabolism and energy storage. Among the mechanisms, metabolic endotoxemia (higher plasma LPS levels), gut permeability and the modulation of gut peptides (GLP-1 and GLP-2) have been proposed as putative targets. Here we discuss 1 degrees the specific modulation of the gut microbiota composition by using prebiotics and 2 degrees the novel findings that may explain how gut microbiota can be involved in the development or in the control of obesity and associated low-grade inflammation.

Download full-text

Full-text

Available from: Patrice D Cani, Jan 12, 2016
    • "Even the lung tumors of smokers has considerable association with microbes as well (Cummins and Tangney, 2013). The microbiome has also been shown to secrete metabolites that promote liver cancer through the senescence secretome (Cani and Delzenne, 2010; DiBaise et al., 2008; Kadooka et al., 2010; Pischon et al., 2008; Wang et al., 2014; Yoshimoto et al., 2013). Turnbaugh performed an interesting study where he was able to demonstrate significant effects of diet on the microbiome by transplanting fresh or frozen adult fecal microbial communities into germ-free c57BL/6 J mice (Turnbaugh et al., 2009b). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism's ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking into consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host's immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Jul 2015 · Environmental Research
    • "The consumption of prebiotics able to favor the proliferation of a given microbiota has also been suggested as a potential strategy to improve obesity. In fact, Cani et al. (2012) demonstrated that prebiotic treatment decreases gut permeability and metabolic endotoxemia and improves insulin sensitivity, steatosis, and lowgrade inflammation via several mechanisms including the following: (i) an increased L cell number and endogenous GLP-1 and GLP-2 production and (ii) an increased leptin sensitivity, which controls energy homeostasis and GLP-1 production [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gut microbiota, its evolutive dynamics and influence on host through its protective, trophic and metabolic actions, has a key role in health and opens unique opportunities for the identification of new markers of the physiopathological state of each individual. Alterations in gut microbiota composition have been associated with plenty disorders. Of interest, the vast number of studies demonstrates the role of microbiota in obesity, a serious public health problem that has reached epidemic proportions in many developed and middle-income countries. The economic and health costs of this condition and its comorbidities such as fatty liver, insulin resistance/diabetes, or cardiovascular events are considerable. Therefore, every strategy designed to reduce obesity would imply important savings. Targeting microbiota, in order to restore/modulate the microbiota composition with antibiotics, probiotics, prebiotics, or even fecal transplants, is considered as a promising strategy for the development of new solutions for the treatment of obesity. However, there is still lot to do in this field in order to identify the exact composition of microbiota in "health" and the specific mechanisms that regulate the host-microbiotal crosstalk. In addition, it is important to note that changes not only in the gut microbiota profile (abundance) but also in its metabolism and functions need to be taken into account in the context of contribution in the physiopathology of obesity and related disorders.
    No preview · Article · Mar 2015 · Journal of physiology and biochemistry
  • Source
    • "However, in the presence of high fat (HF) diet-induced obesity there is a substantial increase in gut pathogenic microbiome and metabolic endotoxemia i.e. when LPS concentration is much higher in the blood in both animals and humans[76,77]. Bacteria and HF diet interact to promote pro-inflammatory changes in the gut which has a strong and significant association with progression of obesity787980. Rodent and human studies demonstrate that chronic inflammation is characterized by macrophage infiltration in adipose tissue during obesity[81,82]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity, an epidemic problem in the world is associated with several health problems. An understanding of mechanisms/factors that predispose, delay or protect individuals from obesity and its associated metabolic disturbances and cognitive impairment would be invaluable. The human gut harbors a diverse population of microbial organisms which are symbiotic and important for well being. However, studies on conventional and germ-free animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiome (termed “dysbiosis”) contribute to gut inflammation, generation of LPS and pro-inflammatory cytokines, gut leakage, and systemic- and neuro-inflammation. The immune mechanisms that are necessary for gut homeostasis may become dysfunctional and lead to bowel inflammation and gut-brain axis dysfunction. These factors are potentially involved in inducing obesity as well. It may be wise to consider the wider hypothesis that gut’s dysbiosis, commencing as a response to fatty food, modulates neuro-inflammation and cognitive dysfunction. This may be enhanced by concomitant noxious factors such as consumption of NSAIDS and alcohol in the elderly. The neurotoxic mechanisms when chronic may enhance vulnerability to dementia of Alzheimer’s type (AD), and perhaps contribute to other dementias as well. Therapeutic strategies for amelioration of cognitive decline and AD are desperately needed. It is pragmatic then that immunologically mediated gut dyshomeostasis is abrogated by available options including Prebiotics, Probiotics, and Synbiotics. Decreasing gut’s dysbiosis may thus attenuate neuroinflammation and provide a potential treatment for obesity-related cognitive impairment. Further, the 'gut-brain axis' or 'brain-gut axis' (depending on whether one considers bottom-up or top-down pathway) is a bi-directional communication system, comprised of neural pathways encompassing enteric nervous system and the vagus. Vagus nerve stimulation in conjunction with α7 nAChR agonists may be an important therapeutic modality in gut pathology to upregulate parasympathetic/vagal efferent function, ameliorate gut-brain axis dysfunction and neuroinflammation, and decrease vulnerability to AD.
    Full-text · Article · Dec 2013 · Journal of molecular and genetic medicine: an international journal of biomedical research
Show more