Oseltamivir–Resistant Pandemic H1N1/2009 Influenza Virus Possesses Lower Transmissibility and Fitness in Ferrets

Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
PLoS Pathogens (Impact Factor: 7.56). 07/2010; 6(7):e1001022. DOI: 10.1371/journal.ppat.1001022
Source: PubMed


The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007-2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic.

Download full-text


Available from: David Boltz
  • Source
    • "This result is similar to other reports of mixed populations occurring in H275Y variant A(H1N1)pdm09 viruses [9], and together they suggest either that a small proportion of the sensitive viruses survive the treatment, or that the mutation conferring oseltamivir sensitivity rapidly re-establishes itself in the virus population after the bottleneck. These data also suggest that the NA 275Y containing virus may be less fit than the sensitive NA 275H virus, a hypothesis that is supported by experiments in a ferret model [13], although contradictory to the 275Y variant outgrowing the 275H wild-type in MDCK cells. However, other authors did not find the resistant 275Y virus to be attenuated in other animal models [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly respond to selection pressures, such as those imposed by the immunological host response and antiviral therapy. We have applied deep sequencing to characterize influenza intra-host variation in a transmission chain consisting of three cases due to oseltamivir-sensitive viruses, and one derived oseltamivir-resistant case. Methods Following detection of the A(H1N1)pdm09 infections, we deep-sequenced the complete NA gene from two of the oseltamivir-sensitive virus-infected cases, and all eight gene segments of the viruses causing the remaining two cases. Results No evidence for the resistance-causing mutation (resulting in NA H275Y substitution) was observed in the oseltamivir-sensitive cases. Furthermore, deep sequencing revealed a subpopulation of oseltamivir-sensitive viruses in the case carrying resistant viruses. We detected higher levels of intra-host variation in the case carrying oseltamivir-resistant viruses than in those infected with oseltamivir-sensitive viruses. Conclusions Oseltamivir-resistance was only detected after prophylaxis with oseltamivir, suggesting that the mutation was selected for as a result of antiviral intervention. The persisting oseltamivir-sensitive virus population in the case carrying resistant viruses suggests either that a small proportion survive the treatment, or that the oseltamivir-sensitive virus rapidly re-establishes itself in the virus population after the bottleneck. Moreover, the increased intra-host variation in the oseltamivir-resistant case is consistent with the hypothesis that the population diversity of a RNA virus can increase rapidly following a population bottleneck.
    Full-text · Article · Apr 2013 · Virology Journal
  • Source
    • "They are prepared annually in an effort to match vaccine composition with the global epidemiological surveillance data for a particular year [4,5]. Unfortunately, these vaccines are mainly designed to induce subtype-specific neutralizing antibodies and do not protect against infection with other influenza subtypes or with antigenic variants [4,6]. Additionally, because the influenza virus strain that will cause the next epidemic or pandemic cannot be predicted, new vaccination strategies that will result in broad cross-reactivity against influenza viruses need to be developed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Influenza vaccines are prepared annually based on global epidemiological surveillance data. However, since there is no method by which to predict the influenza strain that will cause the next pandemic, the demand to develop new vaccination strategies with broad cross-reactivity against influenza viruses are clearly important. The ectodomain of the influenza M2 protein (M2e) is an attractive target for developing a vaccine with broad cross-reactivity. For these reasons, we investigated the efficacy of an inactivated H9N2 virus vaccine (a-H9N2) mixed with M2e (1xM2e or 4xM2e) proteins expressed in Escherichia coli, which contains the consensus of sequence the extracellular domain of matrix 2 (M2e) of A/chicken/Vietnam/27262/09 (H5N1) avian influenza virus, and investigated its humoral immune response and cross-protection against influenza A viruses. Results Mice were intramuscularly immunized with a-H9N2, 1xM2e alone, 4xM2e alone, a-H9N2/1xM2e, or a-H9N2/4xM2e. Three weeks post-vaccination, mice were challenged with lethal homologous (A/ chicken /Korea/ma163/04, H9N2) or heterosubtypic virus (A/Philippines/2/82, H3N2 and A/aquatic bird/Korea/maW81/05, H5N2). Our studies demonstrate that the survival of mice immunized with a-H9N2/1xM2e or with a-H9N2/4xM2e (100% survival) was significantly higher than that of mouse-adapted H9N2 virus-infected mice vaccinated with 1xM2e alone or with 4xM2e alone (0% survival). We also evaluated the protective efficacy of the M2e + vaccine against infection with mouse-adapted H5N2 influenza virus. Protection from death in the control group (0% survival) was similar to that of the 1×M2e alone and 4xM2e alone-vaccinated groups (0% survival). Only 40% of mice vaccinated with vaccine alone survived challenge with H5N2, while the a-H9N2/1×M2e and a-H9N2/4×M2e groups showed 80% and 100% survival following mouse-adapted H5N2 challenge, respectively. We also examined cross-protection against human H3N2 virus and found that the a-H9N2/1×M2e group displayed partial cross-protection against H3N2 (40% survival), whereas vaccine alone, 1×M2e alone, 4×M2e alone, or H9N2/1×M2e groups showed incomplete protection (0% survival) in response to challenge with a lethal dose of human H3N2 virus. Conclusions Taken together, these results suggest that prokaryote-expressed M2e protein improved inactivated H9N2 virus vaccine efficacy and achieved cross-protection against lethal influenza A virus infection in mice.
    Full-text · Article · Apr 2013 · Virology Journal
  • Source
    • "Early identification and prolonged isolation precautions appear necessary in taking care of infected immuno-compromised patients like critical hematologic/oncological patients. For prevention and control of seasonal influenza among these patients, influenza vaccination is recommended, (as well as in their family members and health care workers), although the immune response to vaccination can be low in these patients [31,32,35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The pandemic influenza A (H1N1) 2009 (H1N1pdm09) virus infection caused illness and death among people worldwide, particularly in hematologic/oncologic patients because influenza infected individuals can shed virus for prolonged periods, thus increasing the chances for the development of drug-resistant strains such as oseltamivir-resistant (OST-r) variant. Methods The aim of our study was to retrospectively evaluate the clinical importance of OST-r variant in circulating strains of the pandemic H1N1pdm09 virus. By means of RT-PCR and Sanger sequencing we analysed the presence of OST-r variant in 76 H1N1pdm09 laboratory-confirmed cases, hospitalized at the hematologic/oncologic ward at Spedali Civili of Brescia –Italy. Results Out of 76 hospitalized hematologic/oncologic patients, 23 patients (30.2%) were infected by H1N1pdm09 virus. Further investigation revealed that 3 patients were positive for the OST-r variant carrying the H275Y mutation. All the 23 infected patients were immuno-compromised, and were under treatment or had been treated previously with oseltamivir. Three patients died (13%) after admission to intensive care unit and only one of them developed H275Y mutation. Conclusions Our retrospective observational study shows that pandemic influenza A (H1N1) 2009 virus can cause significant morbidity and even mortality in hematologic/oncologic patients and confirms the high rate of nosocomial transmission of pandemic H1N1pdm09 virus in these critical subjects. Indeed, the reduction in host defences in these hospitalized patients favoured the prolonged use of antiviral therapy and permitted the development of OST-r strain. Strategies as diagnostic vigilance, early isolation of patients and seasonal influenza A(H1N1) vaccination may prevent transmission of influenza in high risk individuals.
    Full-text · Article · Mar 2013 · BMC Infectious Diseases
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.