Article

The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy

Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
Cancer (Impact Factor: 4.89). 11/2010; 116(22):5150-60. DOI: 10.1002/cncr.25461
Source: PubMed

ABSTRACT

The kinesin superfamily contains a conserved class of microtubule-dependent molecular motor proteins that possess an adenosine triphosphatase activity and motion characteristics. The active movement of kinesins supports several cellular functions, including mitosis, meiosis, and the transport of macromolecules. Mitosis is a process of eukaryotic cell division that involves the division of nuclei, cytoplasm, organelles, and the cell membrane into 2 daughter cells with roughly equivalent portions of these cellular components. Any errors in this process could result in cell death, abnormality (such as gene deletion, chromosome translocation, or duplication), and cancer. Because mitosis is complex and highly regulated, alteration of kinesin expression or function could lead to carcinogenesis. Moreover, because human cancer is a gene-related disease involving abnormal cell growth, targeting kinesins may create a novel strategy for the control of human cancer. Indeed, several such drugs are being tested successfully in the clinic. In this review, the authors discuss in detail the structure and function of kinesins, the correlation of kinesin expression with tumorigenesis and progression, and the development of biomarkers and cancer-targeted therapy involving the kinesin family proteins.

Download full-text

Full-text

Available from: Yue Yu, Dec 15, 2014
  • Source
    • "Kinesins are a family of the ATP-dependent motor proteins that travel unidirectionally along microtubule tracks to fulfill their many roles in intracellular transport or cell division [1] [2] [3]. Kinesins have so far been classified into 14 subfamilies (kinesin-1 family– kinesin-14 family) by phylogenetic analysis of the motor domain [1] [4] and are additionally composed of 45 kinesin superfamily proteins (KIFs) [1] [5]. KIFs reportedly transport organelles or participate in signal transduction, but mainly participate in cell mitosis , particularly in spindle formation, chromosomal and nuclear movement, and cytokinesis [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Kinesin family member 14 (KIF14), a microtubule-based motor protein, plays an important role in chromosomal segregation, congression, and alignment. Considerable evidence indicates that KIF14 is involved in cytokinesis, although little is known about its role in oral squamous cell carcinomas (OSCCs). In the current study, we functionally and clinically investigated KIF14 expression in patients with OSCC. Quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses were used to assess the KIF14 regulatory mechanism in OSCC. Immunohistochemistry (IHC) was performed to analyze the correlation between KIF14 expression and clinical behavior in 104 patients with OSCC. A KIF14 knockdown model of OSCC cells (shKIF14 cells) was used for functional experiments. KIF14 expression was up-regulated significantly (. P<0.05) in OSCCs compared with normal counterparts in vitro and in vivo. In addition, shKIF14 cells inhibited cellular proliferation compared with control cells by cell-cycle arrest at the G2/M phase through up-regulation of G2 arrest-related proteins (p-Cdc2 and cyclin B1). As expected, IHC data from primary OSCCs showed that KIF14-positive patients exhibited significantly (. P<0.05) more larger tumors compared with KIF14-negative patients. The current results suggest for the first time that KIF14 is an indicator of tumoral size in OSCCs and that KIF14 might be a potential therapeutic target for development of new treatments for OSCCs.
    Preview · Article · Sep 2015
  • Source
    • "Although the role of c-MYC in cancer is well established [3], the role that Kinesin-1 plays in tumor formation is not well characterized. Kinesin-1 mRNA and protein levels are elevated in several tumor types and cancer cell lines [8]. Furthermore, ablation of KIF5B shows various degrees of cytotoxicity toward cancer cells [45]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: c-MYC is an oncogenic transcription factor that is degraded by the proteasome pathway. However, the mechanism that regulates delivery of c-MYC to the proteasome for degradation is not well characterized. Here, the results show that the motor protein complex Kinesin-1 transports c-MYC to the cytoplasm for proteasomal degradation. Inhibition of Kinesin-1 function enhanced ubiquitination of c-MYC and induced aggregation of c-MYC in the cytoplasm. Transport studies showed that the c-MYC aggregates moved from the nucleus to the cytoplasm and KIF5B is responsible for the transport in the cytoplasm. Furthermore, inhibition of the proteasomal degradation process also resulted in an accumulation of c-MYC aggregates in the cytoplasm. Moreover, Kinesin-1 was shown to interact with c-MYC and the proteasome subunit S6a. Inhibition of Kinesin-1 function also reduced c-MYC-dependent transformation activities. Taken together, the results strongly suggest that Kinesin-1 transports c-MYC for proteasomal degradation in the cytoplasm and the proper degradation of c-MYC mediated by Kinesin-1 transport is important for transformation activities of c-MYC. In addition, the results indicate that Kinesin-1 transport mechanism is important for degradation of a number of other proteins as well.
    Full-text · Article · May 2014 · Biochimica et Biophysica Acta
  • Source
    • "Of these, mitosis is a complex and highly regulated process of eukaryotic cell division. Any exception in the process of mitosis will result in cell death, gene deletion, chromosome translocation, duplication and even carcinogenesis [12, 13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human hepatocellular carcinoma (HCC) is one of the most common fatal cancers and an important health problem worldwide, but its mechanism is still unclear. Microtubule (MT) kinesin motor proteins orchestrate a variety of cellular processes (e.g. mitosis, motility and organelle transportation) and have been involved in human carcinogenesis. KIF3B, the kinesin superfamily of proteins (KIFs), plays an important role in the regulation of mitotic progression. The expression of KIF3B and its involvement in HCC was investigated. Western blot and immunohistochemistry were used to measure the expression of KIF3B protein in HCC and adjacent non-tumorous tissues in 57 patients and Cell Counting Kit-8 to analyze the effects of growth and interference of KIF3B in the cell cycle process. KIF3B protein level was increased in HCC tissues compared with the adjacent non-tumorous tissues. It was significantly associated with histological differentiation, tumor size, the level of alpha fetal protein (AFP) and proliferation marker Ki-67. Over-expression of KIF3B was correlated with poor survival. Following release of HepG2 cells from serum starvation, the expression of KIF3B was up-regulated. Furthermore, suppression of KIF3B not only decreased cancer cell growth but also induced apoptosis of cells. Our results suggested that KIF3B expression was upregulated in HCC tumor tissues and proliferating HCC cells, and an increased KIF3B expression was associated with poor overall survival. KIF3B over-expression is involved in the pathogenesis of hepatocellular carcinoma and may serve as a potential therapeutic target for human HCC.
    Preview · Article · Dec 2013 · Digestive Diseases and Sciences
Show more