Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis

Department of Epidemiology and Preventive Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, BioPark Building II, 801 West Baltimore Street, Baltimore, MD 21201, USA.
Sexually transmitted infections (Impact Factor: 3.4). 08/2010; 86(4):297-302. DOI: 10.1136/sti.2009.040592
Source: PubMed


The aetiology of bacterial vaginosis (BV) remains unknown.
To describe longitudinal changes in vaginal microbiota.
Thirty-nine women (mean age 36.8 years; 22 (56.4%) African-American) self-collected vaginal specimens twice weekly for 16 weeks as part of a vaginal douching cessation study. In an analysis where each woman serves as her own control, conditional logistic regression was used to evaluate daily, time-varying factors associated with a woman's incident BV episode(s) as compared with her persistently BV-negative sample(s). BV was defined by a Nugent's Gram stain score >or=7.
46.2% of participants had BV in the first 4 weeks of observation. Rapid fluctuation of vaginal microbiota was observed in 226 transitions to BV or spontaneous remission. Duration of BV was often short: 51% of the episodes lasted for only one sample interval (3 days). Among women who had at least one BV episode, the median number of episodes per woman was 8.7 (SD 7.4, range 1-22). Lubricant use 1 day before specimen collection (adjusted OR (aOR)=11.75, 95% CI 1.96 to 70.27) and rectal sex 2 days before (aOR=4.48, 95% CI 2.79 to 7.17) were associated with BV onset.
Rapid fluctuation of the vaginal microbiota was seen. Longitudinal studies with long intervals between sampling are likely to miss episodes of BV. Recent report of lubricant use and rectal sex were associated with incident BV.

Download full-text


Available from: Richard A Cone, Jul 09, 2014
  • Source
    • "H09-00860). The sample size was based on previous longitudinal studies of the vaginal microbiome in which a range of seven to 49 subjects provided sufficient numbers for microbiome investigation [13,25,32-34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The vaginal microbial community plays a vital role in maintaining women’s health. Understanding the precise bacterial composition is challenging because of the diverse and difficult-to-culture nature of many bacterial constituents, necessitating culture-independent methodology. During a natural menstrual cycle, physiological changes could have an impact on bacterial growth, colonization, and community structure. The objective of this study was to assess the stability of the vaginal microbiome of healthy Canadian women throughout a menstrual cycle by using cpn60-based microbiota analysis. Vaginal swabs from 27 naturally cycling reproductive-age women were collected weekly through a single menstrual cycle. Polymerase chain reaction (PCR) was performed to amplify the universal target region of the cpn60 gene and generate amplicons representative of the microbial community. Amplicons were pyrosequenced, assembled into operational taxonomic units, and analyzed. Samples were also assayed for total 16S rRNA gene content and Gardnerella vaginalis by quantitative PCR and screened for the presence of Mollicutes by using family and genus-specific PCR. Results Overall, the vaginal microbiome of most women remained relatively stable throughout the menstrual cycle, with little variation in diversity and only modest fluctuations in species richness. Microbiomes between women were more different than were those collected consecutively from individual women. Clustering of microbial profiles revealed the expected groupings dominated by Lactobacillus crispatus, Lactobacillus iners, and Lactobacillus jensenii. Interestingly, two additional clusters were dominated by either Bifidobacterium breve or a heterogeneous mixture of nonlactobacilli. Direct G. vaginalis quantification correlated strongly with its pyrosequencing-read abundance, and Mollicutes, including Mycoplasma hominis, Ureaplasma parvum, and Ureaplasma urealyticum, were detected in most samples. Conclusions Our cpn60-based investigation of the vaginal microbiome demonstrated that in healthy women most vaginal microbiomes remained stable through their menstrual cycle. Of interest in these findings was the presence of Bifidobacteriales beyond just Gardnerella species. Bifidobacteriales are frequently underrepresented in 16S rRNA gene-based studies, and their detection by cpn60-based investigation suggests that their significance in the vaginal community may be underappreciated.
    Full-text · Article · Jul 2014
  • Source
    • "There are many published longitudinal studies, but most sampled at long intervals, often weeks or months [14], [50]–[64]. Although much valuable information can be gleaned from these studies, they cannot show rapid fluctuations that were demonstrated in studies that used daily vaginal swabs over at least a portion of the study interval [65]–[70]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial vaginosis (BV) affects ∼30% of women of reproductive age, has a high rate of recurrence, and is associated with miscarriage, preterm birth, and increased risk of acquiring other sexually transmitted infections, including HIV-1. Little is known of the daily changes in the vaginal bacterial composition as it progresses from treatment to recurrence, or whether any of these might be useful in its prediction or an understanding of its causes. We used phylogenetic branch-inclusive quantitative PCR (PB-qPCR) and Lactobacillus blocked/unblocked qPCR (Lb-qPCR) to characterize longitudinal changes in the vaginal microbiota in sequential vaginal self-swabs from five women with recurrent BV, from diagnosis through remission to recurrence. Both patients with acute BV samples dominated by G. vaginalis recurred during the study with similar profiles, whereas the three patients with acute BV samples dominated by other anaerobes did not recur or recurred to an intermediate Nugent score. L. iners dominated remission phases, with intermittent days of abnormal microbial profiles typically associated with menses. The exception was a newly discovered phenomenon, a sustained period of abnormal profiles, termed conversion, which preceded symptomatic acute BV. Species known to have antagonistic activity towards Lactobacillus were detected in pre-conversion samples, possibly contributing to the decline in Lactobacillus. Lb-qPCR scores define two categories of response in the initial post-treatment visit samples; scores <5 may correspond with poor response to treatment or rapid recurrence, whereas scores >8 may predict delayed or no recurrence. Amsel criteria or Nugent scores did not have this potential predictive capability. Larger studies are warranted to evaluate the prognostic potential of detecting conversion and poor Lb-qPCR scores at the post-treatment visit of recurrent BV patients.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Source
    • "For example and in contrast, inflammatory bowel disease is characterized by a loss of diversity [8]. The vaginal microbiota is highly dynamic and bacterial populations can change rapidly between the healthy and BV states [1,4,9], but the cause for these transitions is unknown. The most frequently detected organism, Lactobacillus iners, appears to have a streamlined genome adapted for persistence in the vagina [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Bacterial vaginosis (BV), the most common vaginal condition of reproductive-aged women, is associated with a highly diverse and heterogeneous microbiota. Here we present a proof-of-principle analysis to uncover the function of the microbiota using meta-RNA-seq to uncover genes and pathways that potentially differentiate healthy vaginal microbial communities from those in the dysbiotic state of bacterial vaginosis (BV). Results The predominant organism, Lactobacillus iners, was present in both conditions and showed a differing expression profile in BV compared to healthy. Despite its minimal genome, L. iners differentially expressed over 10% of its gene complement. Notably, in a BV environment L. iners increased expression of a cholesterol-dependent cytolysin, and of mucin and glycerol transport and related metabolic enzymes. Genes belonging to a CRISPR system were greatly upregulated suggesting that bacteriophage influence the community. Reflective of L. iners, the bacterial community as a whole demonstrated a preference for glycogen and glycerol as carbon sources under BV conditions. The predicted end-products of metabolism under BV conditions include an abundance of succinate and other short-chain fatty-acids, while healthy conditions are predicted to largely contain lactic acid. Conclusions Our study underscores the importance of understanding the functional activity of the bacterial community in addition to characterizing the population structure when investigating the human microbiome.
    Full-text · Article · Apr 2013
Show more