Gene-environment interaction tests for family studies with quantitative phenotypes: A review and extension to longitudinal measures

Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
Human genomics (Impact Factor: 2.15). 06/2010; 4(5):302-26. DOI: 10.1186/1479-7364-4-5-302
Source: PubMed


Longitudinal studies are an important tool for analysing traits that change over time, depending on individual characteristics and environmental exposures. Complex quantitative traits, such as lung function, may change over time and appear to depend on genetic and environmental factors, as well as on potential gene-environment interactions. There is a growing interest in modelling both marginal genetic effects and gene-environment interactions. In an admixed population, the use of traditional statistical models may fail to adjust for confounding by ethnicity, leading to bias in the genetic effect estimates. A variety of methods have been developed to account for the genetic substructure of human populations. Family-based designs provide an important resource for avoiding confounding due to admixture. To date, however, most genetic analyses have been applied to cross-sectional designs. In this paper, we propose a methodology which aims to improve the assessment of main genetic effect and gene-environment interaction effects by combining the advantages of both longitudinal studies for continuous phenotypes, and the family-based designs. This approach is based on an extension of ordinary linear mixed models for quantitative phenotypes, which incorporates information from a case-parent design. Our results indicate that use of this method allows both main genetic and gene-environment interaction effects to be estimated without bias, even in the presence of population substructure.

Download full-text


Available from: Hortensia Moreno-Macias, Dec 27, 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study uses data from the Framingham Heart Study to examine the relevance of the gene-environment interaction paradigm for genome-wide association studies (GWAS). We use completed college education as our environmental measure and estimate the interactive effect of genotype and education on body mass index (BMI) using 260,402 single-nucleotide polymorphisms (SNPs). Our results highlight the sensitivity of parameter estimates obtained from GWAS models and the difficulty of framing genome-wide results using the existing gene-environment interaction typology. We argue that SNP-environment interactions across the human genome are not likely to provide consistent evidence regarding genetic influences on health that differ by environment. Nevertheless, genome-wide data contain rich information about individual respondents, and we demonstrate the utility of this type of data. We highlight the fact that GWAS is just one use of genome-wide data, and we encourage demographers to develop methods that incorporate this vast amount of information from respondents into their analyses.
    Full-text · Article · Nov 2013 · Demography
  • [Show abstract] [Hide abstract]
    ABSTRACT: While there has been extensive research developing gene-environment interaction (GEI) methods in case-control studies, little attention has been given to sparse and efficient modeling of GEI in longitudinal studies. In a two-way table for GEI with rows and columns as categorical variables, a conventional saturated interaction model involves estimation of a specific parameter for each cell, with constraints ensuring identifiability. The estimates are unbiased but are potentially inefficient because the number of parameters to be estimated can grow quickly with increasing categories of row/column factors. On the other hand, Tukey's one-degree-of-freedom model for non-additivity treats the interaction term as a scaled product of row and column main effects. Because of the parsimonious form of interaction, the interaction estimate leads to enhanced efficiency, and the corresponding test could lead to increased power. Unfortunately, Tukey's model gives biased estimates and low power if the model is misspecified. When screening multiple GEIs where each genetic and environmental marker may exhibit a distinct interaction pattern, a robust estimator for interaction is important for GEI detection. We propose a shrinkage estimator for interaction effects that combines estimates from both Tukey's and saturated interaction models and use the corresponding Wald test for testing interaction in a longitudinal setting. The proposed estimator is robust to misspecification of interaction structure. We illustrate the proposed methods using two longitudinal studies-the Normative Aging Study and the Multi-ethnic Study of Atherosclerosis. Copyright © 2014 John Wiley & Sons, Ltd.
    No preview · Article · Aug 2014 · Statistics in Medicine