Crystal structure of a truncated urease accessory protein UreF from Helicobacter pylori

Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada.
Proteins Structure Function and Bioinformatics (Impact Factor: 2.63). 10/2010; 78(13):2839-48. DOI: 10.1002/prot.22802
Source: PubMed


Urease plays a central role in the pathogenesis of Helicobacter pylori in humans. Maturation of this nickel metalloenzyme in bacteria requires the participation of the accessory proteins UreD (termed UreH in H. pylori), UreF, and UreG, which form sequential complexes with the urease apoprotein as well as UreE, a metallochaperone. Here, we describe the crystal structure of C-terminal truncated UreF from H. pylori (residues 1-233), the first UreF structure to be determined, at 1.55 A resolution using SAD methods. UreF forms a dimer in vitro and adopts an all-helical fold congruent with secondary structure prediction. On the basis of evolutionary conservation analysis, the structure reveals a probable binding surface for interaction with other urease components as well as key conserved residues of potential functional relevance.

Download full-text


Available from: Robert P Hausinger
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori is a striking example of adaptation of a bacterium to a very peculiar niche, the human stomach. Despite being a neutralophile, a sophisticated control of gene expression allows it to live and to proliferate in an environment that cycles from nearly neutral to very acidic. Despite the numerous studies performed on the mechanisms of acid adaptation, the physiological function of a large part of the genes products that are up-regulated or down-regulated is often not clear, in particular in the context of the response of the bacterium to an acidic stress. In this review, we discuss the molecular and functional aspects of some of the proteins that are commonly found overexpressed during the acid stress. © 2010 IUBMB IUBMB Life, 62(10): 715–723, 2010
    Full-text · Article · Oct 2010 · International Union of Biochemistry and Molecular Biology Life
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO2 in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is ‘spoiled’ by the altered missense Ch02UreF proteins (‘epistatic dominant-negative’). In agreement with active ‘spoiling’ by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of ‘functional divergence’ of duplicated genes.
    Full-text · Article · Mar 2011 · Journal of Experimental Botany
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transition metals are both essential to enzymatic catalysis and limited in environmental availability. These two biological facts have together driven organisms to evolve mechanisms for selective metal ion sensing and utilization. Changes in metal ion concentrations are perceived by metal-dependent transcription factors and transduced into appropriate cellular responses, which regulate the machineries of competitive metal ion homeostasis and metallo-enzyme activation. The intrinsic toxicity of the majority of metal ions further creates a need for regulated intracellular trafficking, which is carried out by specific chaperones.
    No preview · Article · May 2011 · Accounts of Chemical Research
Show more