Viral Load Drives Disease in Humans Experimentally Infected with Respiratory Syncytial Virus

Department of Pediatrics, University of Tennessee College of Medicine, Memphis, USA.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 13). 11/2010; 182(10):1305-14. DOI: 10.1164/rccm.201002-0221OC
Source: PubMed


Respiratory syncytial virus (RSV) is the leading cause of childhood lower respiratory infection, yet viable therapies are lacking. Two major challenges have stalled antiviral development: ethical difficulties in performing pediatric proof-of-concept studies and the prevailing concept that the disease is immune-mediated rather than being driven by viral load.
The development of a human experimental wild-type RSV infection model to address these challenges.
Healthy volunteers (n = 35), in five cohorts, received increasing quantities (3.0-5.4 log plaque-forming units/person) of wild-type RSV-A intranasally.
Overall, 77% of volunteers consistently shed virus. Infection rate, viral loads, disease severity, and safety were similar between cohorts and were unrelated to quantity of RSV received. Symptoms began near the time of initial viral detection, peaked in severity near when viral load peaked, and subsided as viral loads (measured by real-time polymerase chain reaction) slowly declined. Viral loads correlated significantly with intranasal proinflammatory cytokine concentrations (IL-6 and IL-8). Increased viral load correlated consistently with increases in multiple different disease measurements (symptoms, physical examination, and amount of nasal mucus).
Viral load appears to drive disease manifestations in humans with RSV infection. The observed parallel viral and disease kinetics support a potential clinical benefit of RSV antivirals. This reproducible model facilitates the development of future RSV therapeutics.

Download full-text


Available from: Tom M Wilkinson, Apr 03, 2014
  • Source
    • "The virus was manufactured under GMP conditions as previously described (DeVincenzo et al., 2010). Challenge virus was prepared in accordance with standard Retroscreen (hVIVO) procedures and administered intra-nasally. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Retroscreen (hVIVO) have developed an RSV human viral challenge model (hVCM) for testing the efficacy of novel antiviral therapies by monitoring changes in viral load and symptoms. The integrated cycler technology and Simplexa™ kits (Focus Diagnostics) currently provide fast, qualitative and sensitive diagnostic testing in hospitals and other healthcare facilities for patients with well-established respiratory illness. We have developed a novel use of qualitative integrated cycler PCR (qicPCR) technology to identify onset of RSV infection enabling an informed dosing clinical protocol in the RSV hVCM. We have validated qicPCR detection of RSV in spiked nasal wash aspirates and demonstrate that the qicPCR assay is 94% concordant with RSV plaque assay data in nasal wash samples from 53 RSV inoculated human volunteers in the hVCM. The use of qicPCR for informed dosing was successfully implemented in a recent clinical trial demonstrating efficacy of the RSV entry inhibitor GS-5806 in the hVCM (NCT01756482). Comparison of qicPCR positivity in relation to nasal wash viral load measured by both RT-qPCR and plaque assay shows that the therapeutic exposure was correctly initiated prior to onset and peak of RSV viral shedding and symptoms in the majority of volunteers. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Aug 2015 · Journal of virological methods
  • Source
    • "Sucrose was added to 8% and the virus stock was frozen at −80 °C and titered for infectivity on HEp-2 cells. RSV M37 is a wild type RSV-A first isolated from infected humans and used in human clinical studies [25]. The amount and dose of virus used in these studies is similar to those from our previous work with RSV A2 strain [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infant immune system, a model of infant disease is needed. The neonatal lamb pulmonary development and physiology is similar to that of infants, and sheep are susceptible to ovine, bovine, or human strains of RSV. RSV grown in Vero (African green monkey) cells has a truncated attachment G glycoprotein as compared to that grown in HEp-2 cells. We hypothesized that the virus grown in HEp-2 cells would cause more severe clinical symptoms and cause more severe pathology. To confirm the hypothesis, lambs were inoculated simultaneously by two different delivery methods (intranasal and nebulized inoculation) with either Vero-grown or HEp-2-grown RSV Memphis 37 (M37) strain of virus to compare viral infection and disease symptoms. Lambs infected with HEp-2 cell-derived virus by either intranasal or nebulization inoculation had significantly higher levels of viral RNA in lungs as well as greater clinical disease including both gross and histopathologic lesions compared to lambs similarly inoculated with Vero-grown virus. Thus, our results provide convincing in vivo evidence for differences in viral infectivity that corroborate previous in vitro mechanistic studies demonstrating differences in the G glycoprotein expression by RSV grown in Vero cells.
    Full-text · Article · Nov 2013 · Viruses
  • Source
    • "RSV is a major cause of morbidity and mortality globally, particularly in infants, for which there is currently no effective vaccination or treatment available. In experimentally induced RSV infection in adult volunteers, early high viral titres have been found to correlate with severity of inflammatory disease manifestations [25]. In addition, more severe disease in infants is associated with high viral titres in early stages of naturally-occurring RSV bronchiolitis [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.
    Full-text · Article · Aug 2013 · PLoS ONE
Show more